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1 Introduction

Intersections are a major bottleneck for urban networks. To optimize traffic signal timings,
recent studies (Wongpiromsarn et al., 2012; Varaiya, 2013; Le et al., 2015) proposed max-
pressure control techniques which use observed queue lengths to adaptively adjust signal
timings. The key desirable properties of max-pressure control are mazimum stability, i.e.
max-pressure control is analytical proven to serve all demand if the demand could be served
by any signal timing. Another nice property is decentralized control, in which the network-
wide optimal solution can be found by a local computation at each intersection that depends
only on the immediately upstream and downstream links.

Given these favorable characteristics, we seek to resolve a major practical issue that dis-
courages implementation by city engineers. Specifically, drivers prefer traffic signals to follow
a cyclical phase structure. Most work on max-pressure control (building off Wongpiromsarn
et al., 2012; Varaiya, 2013) use a time step-based phase selection. (Although Le et al., 2015,
has a signal cycle, the cycle length is fixed and phase durations can be arbitrarily small.)
Although a non-cyclical phase selection may improve throughput, the limitations include po-
tentially unbounded waiting times and the appearance of phases being “skipped” for waiting
drivers. Due to the need to also serve pedestrians, and the desire to avoid complaints from
drivers, the lack of a cyclical phase selection discourages implementation by city engineers.

The contributions of this paper are as follows: We modify Varaiya (2013)’s max-pressure
control model and policy to follow a signal cycle with a maximum cycle length. The cycle
length constraint restricts the size of the stable region, but we prove that the new max-
pressure policy still has maximum stability (among signal timings that also follow the cycle
length constraint). The resulting policy takes the form of model predictive control. Numer-
ical results will compare delays and throughput for max-pressure control with and without
the cyclical structure constraints.



2 Methodology

2.1 Network model

Consider a network G = (N, A) with nodes N and directed links A. The set of nodes is
divided into junctions N; and centroids N,. The set of links is divided into internal links A;
and entry links A.. Entry links connect a centroid to a junction. Internal links connect two
junctions. All vehicles enter the network on an entry link and travel through the network
until reaching their destination centroid. Route choice is modeled through exogenous turning
proportions.

Consider discretized time. Assume without loss of generality that each link takes 1 time
step to traverse at free flow. (Longer links can be divided into shorter segments.) Like
previous work on max-pressure signal control (Varaiya, 2013; Le et al., 2015), we track the
evolution of queue lengths per link using a store-and-forward queueing model. Let x;;(t) be
the number of vehicles on link ¢ waiting to move to link j. Link queues are separated by
turning movements because different turning movements may not be actuated simultaneously
during a traffic signal. Link queues evolve via conservation of flow. For internal links, flow
conservation results in

wir(t+1) = 2(t) — yie(t) + Y yi (Orn(D) (1a)

icA
where y;(t) is the flow of vehicles from j to k at time ¢, which is controlled by traffic signal
actuation. Turning proportions 7;;(t) determine the proportion of vehicles entering j that
will next move to k. We assume that rj,(¢) are independent identically distributed random

variables with mean 7;;. Flow conservation also applies to entry links, but entering flow is
determined by the demand d;(t).

23yt + 1) = 25 (8) — gy (8) + di(O)ry (1) (1b)

We assume that for each entry link i € A, d;(t) for all ¢ are independent identically dis-
tributed random variables with mean d;. We further assume that d;(¢) has a maximum value
d;, which is reasonable because centroids are likely to have a physical capacity limitation.
The queue length state x(t) forms a Markov chain with stochasticity due to the random
demand d(t) and turning proportions r(t).

Intersection flows y;;(t) are controlled by the traffic signal activation. At each time step,
a traffic signal phase is selected. Let s;;(t) € {0,1} indicate whether turning from (i, j) is
permitted at time step ¢. Then y;;(¢) is defined by

Yij(t) = min {x;;(t), s;5(¢)Qis } (2)

where ();; is the capacity of turning movement (i, 7).

2.2 Traffic signal cycle

Each turning movement (7, j) is uniquely associated with one node n, where i is an incoming
link and 7 is an outgoing link. Let M,, be the set of turning movements associated with n.



Let P, be the ordered set of phases comprising the signal cycle for n. Let p,(t) € [1,|P,|] be
the phase number actuated at time step ¢ for node n. Phases directly determine the turning
movement activation s;;(t). Let &; € {0,1} indicate whether phase p activates movement
(,7). Then

si(t) = € (3)
We assume that phases must be actuated in the specified order. To satisfy that, the phase
at time step ¢ is either the phase at ¢ — 1 or the next phase in the cycle:

Pu(t) € {pn(t = 1), pa(t = 1) + 1} (4)

Furthermore, each phase must be actuated for at least one time step each cycle. Let C' be
the maximum cycle length. Let ¢,(t) be the duration of time since the signal cycle started
for node n at time step t.

1 if po(t) = |Pn| and p,(t +1) =1
cn(t) +1  else

cr(t+1) = { (5)

To maintain a maximum cycle length, require that ¢,(t) < C for all t. Since each phase is
actuated for at least one time step, the maximum cycle length imposes a constraint on phase
actuation:

Pu(t) = [Pul = (C = ca(t)) (6)

2.3 Stable region

We first define stability mathematically. The network is stable if the number of vehicles in
the network remains bounded in expectation. Equivalently, there exists a K < oo such that

im =3 Y Ele(0)] < (7)

To define the stable region, let f; be the average traffic volume for link 7. For entry links,

==
I

(8a)
For internal links, f; can be determined by conservation of flow:
fi =Y fiFi (8b)
icA

The network can be stabilized if the average traffic volume can be served by some signal
control. Equivalently, there must exist an average signal activation 5;; such that

fiTij < 5iQ45 (9)

Let D be the set of demand rates such that equations (8) and (9) hold. Let D be the interior
of D.



2.4 Max-pressure policy

First, define the weight for turning movement (i, 5), w;;(t), as

wii(t) = 2y5(t) = Y xn(t)Tsm (10)

i€A

This pressure has an intuitive interpretation of seeking to move vehicles from long queues to
short queues. However, the precise form is analytically necessary for the stability proof.

Let zP(t) € {0, 1} indicate whether phase p is activated for node n at time ¢. Notice that
2P(t — 1) is exogenous and determined by p,(t — 1), specifically

S—1) = {1 p=pult=1) th

0 else

To ensure that each phase is selected at most once,

[Pn|
2t+71)=1 Vn e N;,VT € [0, T —1] (12)

p=1
Since phases proceed in order, z,(t) is constrained by z,(t —1). Equation (4) can be written
as the following constraint:

PA+T)<Pt+T -1+ 22t +T 1) Vn € Ni,V1 € [0, T — 1] (13)

which requires that 22(¢) = 1 only if phase p or p — 1 was active at time ¢ — 1. Since phases
follow a cycle, when p = 1 phase p — 1 refers to phase |P,]|.

Notice also that ¢, (t—1) is exogenous, and determines the number of time steps remaining
before the maximum cycle length is reached. Let ¢,(t) € {0,1} indicate whether the cycle
restarts at time ¢ for node n.

On(t+7) <2t 471) = Pt 4+ 7 -1) Vn e Ni,Vr € [0, T — 1] (14)

which admits ¢, (t) = 1 only when the phase at node n switches from |P,| to phase 1 from
time ¢ — 1 to t. Let ¢,(t) be the number of time steps since the cycle was started, as defined
by equation (5):

t+7—1)+1 @u(t+7)=0

cn(t+7):{1 onll +7) =1 Vn € M;,Vr € [0, T — 1] (15)

The maximum cycle length is enforced by the constraint

e(t+71)<C, Vn € Ni,VT € [0, T — 1] (16)



The final constraint is to relate s;;(¢ + 7) with the phase selection:
sij(t+71) = Zzp—n Vn € M;,Vr € [0, T — 1] (17)
The max-pressure pohcy is found by solving the following integer linear program:

max —Z Z 535 (t + 7)Qijwi;(t) (18)

7=0 (i,j)€.A2
St (12)-(17)

The optimal solution to problem (18) at time ¢, s*(t), is actuated at time step t. The
remainder of the horizon of the optimal solution, s*(¢ + 7) for ¢ € [1, 7], is included only for
planning purposes and discarded after actuating the solution at time t.

Proposition 1. Ifd € D°, then the maz-pressure policy is stabilizing. If d ¢ D, then no
signal timing is stabilizing.

3 Conclusions

This paper developed a max-pressure control with a cyclical phase structure. A store-and-
forward queueing model similar to Varaiya (2013) was created, but with the addition of cycle
length and phase selection constraints. The set of demand rates that could be served by any
signal timing was analytically described, and used to prove that the proposed max-pressure
policy has maximum stability. Due to the signal cycle structure, the max-pressure control
takes the form of a model predictive control.
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