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1 Introduction

Automated vehicles (AVs) are rarely seen on the streets today. Even when we
occasionally catch a glimpse of one, there is always a person in the driver’s seat
ready to take control in case of an emergency. However, plenty of research has
been devoted in the last years to how automated vehicles might impact the way5

we travel [1, 2, 3, 4, 5, 6, 7, 8].
Elimination of the driver would bring two important changes in how we use

cars. First, people that can not drive because they do not posses a driver’s
license or are otherwise unable to drive would gain access to the freedom that
the automobile provides. Second, a substantial cost element of taxi services10

would be eliminated by removing the driver from the equation, which shows
the potential for shared vehicle fleets to thrive and potentially reduce private
vehicle ownership.

Researchers focusing on impacts of shared automated vehicle fleets are sug-
gesting that the required number of vehicles needed to serve the demand in15

urban cores is about 10% of the current fleet. While this promises to reduce the
necessary parking space, it creates additional vehicle miles traveled, because of
the need to re-position vehicles to efficiently serve the demand. Potential in-
duced demand from those people who currently do not use a car only worsens
the picture. In order to mitigate this problem, ride-sharing is seen as a potential20

solution.
This work focuses on first estimating the potential demand for single-occupancy

on-demand automated taxi fleets and second on estimating the potential of pool-
ing in the world of automated taxi fleets. The goal of this work is to present
results and insights for two European cities: Paris and Zurich, two North Amer-25

ican cities: Los Angeles and San Francisco and one South American city: Sao
Paulo. The diversity of these cities in size, socio-demographics, land use, and ge-
ography should shed additional light of potentials of this kind of services under
different circumstances.

2 Methodology30

In order to investigate the tasks as set forth in the previous section a multi-
agent transport simulation (MATSim, [9]) and its derivative eqasim [10] have
been used. A synthetic population of agents representing travel behavior of
people performing activities in the study area has been generated for Zurich,
Paris, Los Angeles, San Francisco, and Sao Paulo, and shall be used as an input35

to MATSim simulations.
Furthermore, we utilize the findings of [11] on cost estimates for future shared

automated fleets for each of these cities. Finally, a mode-choice model was es-
timated for each of these cities based on the household travel diary surveys
conducted in each city. As shared automated vehicles are a thing of the fu-40

ture, and as information on individual’s preferences towards AVs was obtained
only for Zurich [12], we have used this information to approximate mode-choice
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parameters for other cities in this study.
Finally, we solve the problem of minimal fleet sizing of a pooled vehicle fleet

by means of a mixed integer linear programming (MILP) program [13]. We45

use a variant of a discrete minimum-cost flow problem. Capacity of vehicles is
assumed to be two, five, and ten. Therefore, the algorithm first identifies OD
pairs where a 10-seater vehicles can be used, then 5-seater, and then the rest of
the demand is served by 2-seater AVs. This is followed by fleet minimization
in order to serve the obtained trips. VKT is kept at minimum by allowing only50

configurable short-distance relocation of empty AVs. The pooling technique tries
to pool rides with similar departing time, and origin and destination locations.
Departure time of the pooled vehicle and acceptable distance between origins
and destinations of individuals being pooled together is a configurable variable
in the algorithm.55

3 Results

The potential demand for shared AV fleets in Zurich and Paris can be seen in
Figures 1 and 2, respectively. Blue values show the demand for fixed prices,
while red one shows the demand in case of a dynamic price based on the fleet
size, and fleet utilization [14]. While the city of Paris is 20% larger in size than60

Zurich, its population density is more than four times higher. This leads to a
better fleet utilization in Paris, but not as substantial as one might expect (48
compared to 35 rides/vehicle in Zurich for maximum demand dynamic price
levels).

Finally, to investigate the full potential of pooling passengers with similar65

ODs, vehicles with capacities of two, five and ten are used as part of a mixed
vehicle fleet. Tested scenarios are with free-flow speed, but also with congestion,
for the city of Zurich. In all cases the number of vehicles needed to serve the
demand is reduced along with the total vehicle kilometers traveled (VKT). In
the scenarios with free-flow speeds only 3.7% of the original fleet is needed to70

serve the demand. If we are to consider that the congestion would stay on the
same level as today this share raises to 4.6%. Reduction of VKT is between
2.6% and 9.8%.

4 Conclusion

Here we briefly show the potential demand for shared automated mobility on-75

demand service for Zurich and Paris with both fixed and dynamic pricing struc-
tures. This is further followed by first results on potential of pooling for shared
AVs for Zurich, where we show further possibilities of reducing the required fleet
to serve the demand, and also VKT.

Incorporating the results from other cities mentioned in the introduction80

will help us to further our understanding of potentials of singe-occupancy and
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pooled shared AV fleets in different geographical regions, with various popula-
tion densities, and socio-demographics.
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Figure 1: Dependency of the number of trips done using the AMoD service on
fleet size in Zurich. In the fixed price cases (blue) low fleet sizes lead to high
waiting times and low demand, in the dynamic price case (red), high prices for
large fleet sizes lead to a demand maximum at around 5k vehicles.
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Figure 2: Dependency of the number of trips done using the AMoD service on
fleet size in Paris. In the fixed price cases (blue) low fleet sizes lead to high
waiting times and low demand, in the dynamic price case (red), high prices for
large fleet sizes lead to a demand maximum at around 25k vehicles.
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