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1 Introduction

The problem of dispatching a fleet of vehicles to serve trip requests can be mathematically

formulated as a dial-a-ride problem. Although well-studied, the dial-a-ride problem has been

traditionally used for dispatching vehicles in para-transit systems, where trip requests are known

well ahead of time. With on-demand transportation alternatives gaining more popularity, the real-

time application of dial-a-ride problem is attracting more interest. However, the computational

complexity of this problem and the fact that the size of the dial-a-ride problem grows exponentially

with the number of requests renders the current solution methodologies inadequate for online

applications.

In this research, we study a dynamic dial-a-ride problem for an on-demand ride-sourcing system

that provides ride-share services to a set of passengers during time horizon T = {1, ..., T} on a

(directed) road network. We assume that the shortest-path travel times and distances between

stations are stored in matrices τ and ρ. Passengers dynamically enter the system during the study

time horizon and provide information regrading their origin and destination stations, and earliest

departure time from their trip origin. A constant parameter, denoted by ω, is introduced to account

for the maximum pick-up waiting time of every passenger at their origin station. Furthermore, in

order to maintain a certain level of service, another constant parameter, Ω, is introduced to limit

the detour of every passenger from their shortest path. Passengers announce their trips at short

notice prior to the start of their trip and expect a response immediately. From historical data

and/or survey responses, the expected number of requests for every origin-destination pair that

enter the system at each time interval is available in φ = [(e, o, d)].

We have a fleet of K homogeneous vehicles with capacity of C that operate during the time

horizon. Every vehicle starts/ends empty in the beginning/end of the horizon from/at any station.

As a result of having discrete sets of time and space, we can represent the time-expanded network

in our study with a directed acyclic graph G. The route of every vehicle in the study time horizon
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can be represented by a path in this graph that connects a node with time 0 to a node with time T .

Finally we assume that vehicles can wait at any station for any number of time steps if necessary.

Finally, without loss of generality we assume that the ride-sourcing system aims to maximize the

total shortest-path driving distances of customers. Since fare of customers are usually proportionate

to the distance of their trips, this objective function is aligned with the purpose of ride-sourcing

companies in maximizing profit.

This research introduces a general framework that provides near-optimal insertion

methodologies using system-level information, in real time. As such, our framework shifts much

of the computational burden of the optimization problems that need to be solved into an offline

setting, thereby addressing the on-demand requests with fast and high quality solutions. Our

research contributes to the literature in the following ways: i) We propose a new local search

algorithm for generating a pool of useful routes in the offline mode; ii) we introduce an efficient

min-cost flow problem to find the best subset of customers served by a fixed route; and iii) we

propose an online framework that exploits the information from historical data to deploy vehicles

proactively and change their routes if necessary in real time.

2 Solution Methodology

Our methodology can be clearly divided into two distinct, yet related, parts, which are implemented

in offline and online phases. The offline portion of the solution methodology aims to sequentially

generate a pool of routes for vehicles k = 1, ...,K. Thus, for each vehicle k, we initially generate

a base route P(k, 1) based on average demand. In order to find the base routes asynchronously,

we introduce a clustering/ re-clustering step to distribute/redistribute the average demand among

vehicles. Next, we reduce time expanded network around each base route and generate M − 1

alternative routes under different realizations of demand requests. In the online setting, the vehicles

will be proactively routed through the base routes. In case of having accurate demand forecasts,

we expect that the base routes readily serve a good portion of passengers en-route. However, the

alternative routes in our pool can be used at any time to change the route of a vehicle toward

more promising directions in real-time. At every time step θ, we run a cost-benefit analysis among

feasible alternative routes by computing profit based on candidate realized customers and predicted

future customers discounted by a factor of β.

2.1 Route Generation.

For generating a route given a demand table, we introduce a local search that starts with generating

random partial routes to every node in G. Next, we iterate between a backward and forward

local search until convergence. Let F(n) and B(n) be partial routes until and from node n,

respectively. At every node n ∈ G in the backward/forward local search, we decide about its

immediate successor/predecessor node (see Figure 1). We proved that this algorithm converges to

a local optimal in finite number of iterations.
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(a) Backward (b) Forward

Figure 1: Local Search Algorithm

2.2 Optimal Served Trip

At every single step of backward/forward local search, we have a complete route X . Thus, given a

demand table (see Figure 2(a)), we can find the optimal set of trips that can be served by a vehicle

on route X efficiently using a min-cost flow problem (see Figure 2(b)).

(a) Demand (b) Min-cost Flow problem

Figure 2: Find optimal served trip by route X = {n1, n2, n3, n4}

3 Numerical Experiments

To showcase the performance of our framework, we consider a simulated ridesharing data set over

a well-known Nguyen-Dupuis network, which consists of 13 nodes, 38 links, and 13 OD pairs. A

fleet of K = 50 homogeneous vehicles with capacity C = 10 is available. We assume a study time

horizon of T = 60 minutes, with time steps of 1 minute. We also set the waiting time ω and detour

budget time Ω to 5 and 10 minutes, respectively. We compare the performance of our algorithm

with two myopic benchmark methods proposed by [2] and [1], respectively referred to as Insertion

and Assignment.

In these experiments, we define two extra parameters µ and σ to generate scenarios where the

actual demand is a shifted (by µ) or scaled (by σ) version of values in φ. Table 1 summarizes the

result of online experiments. For each method, we report the average Revenue (Z) and matching

rate (M) over 20 simulation runs. This table shows that our proposed method significantly

overcomes both the benchmark methods. Even in cases where the the demand forecast is far

from the actual demand, our proposed method outperform these myopic methods. In this table,
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the best value of β is embolden for each scenario. The right choice of value for β depends on the

performance of our demand forecast. In general, high values of β provide higher revenues when the

average of expected demand is close to the average of realized one (scenarios 1 and 3). However,

as mean of demand forecast gets farther from the mean of realized demand, we must choose lower

values of β.

Table 1: The results of different methods on the performance measures averaged over simulation runs in the Nguyen-
Dupuis case study

µ σ β
Our Method Insertion Assignment

Z1 (miles) M1 (%) Z2 (miles) M2 (%) Z3 (miles) M3 (%)

0 0
0.95 2748.90 74

2003.29 57 1914.25 540.50 2741.19 74
0.25 2725.04 74

5 0
0.95 3729.16 56

2997.80 47 2835.92 440.50 3713.06 56
0.25 3677.31 57

0 5
0.95 2847.92 67

2242.68 55 2137.66 520.50 2842.04 67
0.25 2823.32 67

4 Conclusion

It can be easily shown that our methodology can be simply adapted to special cases where there

exist a set of heterogeneous origins and destinations as well as capacities for vehicles. Also, note

that the proposed methodology is in independent of choice of objective function.
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