
A multi-agent reinforcement learning framework for multiple vehicle

routing problems with soft time windows

Ke Zhanga, Meng Lia, Zhengchao Zhanga , Xi Lina, Fang Heb

aDepartment of Civil Engineering, Tsinghua University, Beijing 100084, P.R. China

bDepartment of Industrial Engineering, Tsinghua University, Beijing 100084, P.R.

China

Keywords: Reinforcement learning; Vehicle routing problem; Attention mechanism;

Soft time window; Multi-Agent

1 Introduction

Multi-vehicle routing problem with soft time windows (MVRPSTW) is an

indispensable constituent in urban logistics distribution system (Lau et al., 2003). In the

last decade, numerous methods for MVRPSTW have sprung up, such as Iterated Local

Search (Ibaraki et al., 2008), Genetic Algorithm (Louis et al., 1999; Wang et al., 2008),

but most methods are based on heuristic rules which require huge computation time.

With the rapid increasing of logistics demand, traditional methods incur the dilemma of

computation efficiency. Deep Reinforcement Learning (DRL) shows great power in

solving complex operation problems. Significant attention has also been attracted to

model the VRP utilizing DRL framework.

Vinyals et al. (2015) propose the Pointer Network to solve the Travel Salesman

problem (TSP) which generates a permutation of the input route adopting attention

mechanism. Nazari et al. (2018) apply a policy gradient algorithm to solve VRP which

consists of a Recurrent Neural Network decoder coupled with attention mechanism.

Kool et al. (2018) propose an encoder-decoder framework with multi-head attention

layers to solve VRP and show how to train this model using reinforce gradient estimator.

These pioneering researches have gained fruitful results in the field of single vehicle

dispatching. However, few studies have attempted at employing DRL to solve

 Corresponding author. Email: mengli@tsinghua.edu.cn.

mailto:mengli@tsinghua.edu.cn

MVRPSTW because of existing methods only applicable for single agent. To solve this

problem, we propose a novel reinforcement learning architecture named Multi-Agent

Attention Model (MAAM).

2 Methodology

The MAAM model is essentially an attention-based encoder-decoder model which

takes road network into account by a masking procedure. The problem definition and

details of proposed model are described as follows.

2.1 Problem Definition

The road network can be regarded as a fully connected graph with randomly

generated depot and customers in this Euclidean plane. Given vehicle capacity 𝑄 ,

number of vehicles 𝑀 and a fully connected graph 𝐺(𝔙) where 𝔙 = {𝑣0, 𝑣1, . . . , 𝑣𝑁},

𝑣0 is the depot with coordinate 𝒙𝟎, 𝑣𝑖(𝑖 ≠ 0) is a customer with coordinate 𝒙𝒊, demand

𝑑𝑖, time windows (𝑒𝑖 , 𝑙𝑖), early and late penalty coefficients 𝑝0,𝑖, 𝑝1,𝑖. The MVRPSTW

is to find a set of vertex-disjoint routes 𝒓[𝑚] (𝑚 = 1,2, . . . , 𝑀) for each vehicle starting

and ending at depot 𝑣0. Under this circumstance, each customer 𝑣𝑖 is served only once

by one of the vehicles within its time windows. The problem is to find a solution

𝒓[1, 𝑀] = (𝒓[1], 𝒓[2], . . . , 𝒓[𝑀]) with minimal total cost, which is defined as:

𝐶𝑜𝑠𝑡(𝒓[1, 𝑀]) = 𝑑𝑠𝑢𝑚(𝒓[1, 𝑀]) + 𝑝𝑠𝑢𝑚(𝒓[1, 𝑀]), (1)

where 𝑑𝑠𝑢𝑚(𝒓[1, 𝑀]) = ∑ ∑ ||𝒙𝑟[𝑚][𝑏], 𝒙𝑟[𝑚][𝑏+1]||2
|𝒓[𝒎]|−1
𝑏=1

𝑀
𝑚=1 is the total traveling

cost of all vehicles, 𝑝𝑠𝑢𝑚(𝒓[1, 𝑀]) = ∑ ∑ [𝐼(𝑒𝑖>𝑡̃𝑖) ∗ 𝑝0,𝑖 ∗ (𝑒𝑖 − 𝑡̃𝑖) + 𝐼(𝑡̃𝑖>𝑙𝑖) ∗𝑁
𝑖=1

𝑀
𝑚=1

𝑝1,𝑖 ∗ (𝑡̃𝑖 − 𝑙𝑖)] denotes the total penalty for time window constraints, 𝑡̃𝑖 represents the

total travel time when a vehicle arriving at customer 𝑖.

2.2 Encoder Framework

In MAAM model, the encoder firstly computes initial customer embeddings ℎ𝑖

through a learned linear projection with parameters 𝑊1 and 𝑏1:

ℎ𝑖 = 𝑊1[𝒙𝒊, 𝑑𝑖, 𝑡̂𝑖,0, 𝑡̂𝑖,1] + 𝑏1. (2)

Then the embeddings are updated using multiple attention layers. Each attention

layer carries out a multi-head attention and a feed-forward operation. The attention

mechanism can be interpreted as a weighted message passing algorithm between

customers in a graph. We compute the attention value 𝑍 times with different

parameters and denote the results by ℎ𝑖𝑧
′ for 𝑧 ∈ {1,2, … , 𝑍} .The final multi-head

attention value for customer 𝑖 is a function of ℎ1, … , ℎ𝑛:

ℱ𝑖(ℎ1, … , ℎ𝑛) = ∑ 𝑊𝑍
𝑂ℎ𝑖𝑧

′

𝑍

𝑧=1

. (3)

The remainder of attention layer is a feed-forward operation 𝐹 with skip-

connection:

ℎ̂𝑖 = ℎ𝑖 + ℱ𝑖(ℎ1, … , ℎ𝑛), (4)

ℎ𝑖
(1)

= ℎ̂𝑖 + 𝐹(ℎ̂𝑖), (5)

where the operation 𝐹 is defined as:

𝐹(ℎ̂𝑖) = 𝑊1
𝑓

Re L u(𝑊2
𝑓

ℱ𝑖(ℎ1, … , ℎ𝑛) + 𝑏0
𝑓

) + 𝑏1
𝑓

. (6)

We compute equations (9-10) λ times and acquire {ℎ𝑖
(𝜆)

, 𝑖 = 1, … , 𝑛}. Finally, the

encoder computes an aggregated embedding of the input customers as the mean of the

final output layer:

ℎ̄(𝑁) =
1

𝑛
∑ ℎ𝑖

(𝜆)
𝑁

𝑖=1
. (7)

2.3 Decoder Framework

In decoder part, the agents perceive the state of the environment and each other.

Then they decide a sequential action set based on the knowledge obtained through this

perception.

(1) State

The global state can be divided into environment state and agent state. Environment

state contains the final customers embedding ℎ̄(𝑁) and customers which have been

already visited. The agent state consists of the current vehicle location and remaining

capacity.

At each decoding timestep, the vehicle chooses the customers to visit in the next

step. After visiting customer 𝑖, the remaining capacity 𝑑̂𝑚,𝑡 of vehicle 𝑚 is updated.

In order to utilize information of state, we define multiple vehicles context embedding

ℎ(𝑐),𝑡
(𝑁)

 for the decoder at timestep 𝑡 which comes from the encoder and the vehicle output

up to timestep 𝑡:

ℎ(𝑐),𝑡
(𝑁)

= [ℎ̄(𝑁) ; ℎ𝑟𝑡−1,1
(𝑁)

; 𝑑̂1,𝑡 ; ℎ𝑟𝑡−1,2
(𝑁)

; 𝑑̂2,𝑡 ; … ; ℎ𝑟𝑡−1,𝑀
(𝑁)

; 𝑑̂𝑀,𝑡]. (8)

(2) Action

Action for each vehicle represents the choice of next customer to be visited at

timestep 𝑡 . Firstly, we compute a new multiple vehicles context embedding ℎ(𝑐),𝑡
(𝑁)′

using the multi-head attention mechanism:

 ℎ(𝑐),𝑡
(𝑁)′

= ℱ(ℎ(𝑐),𝑡
(𝑁)

). (9)

Then compute the compatibility of the query 𝑞(𝑐) with all customers:

𝑞(𝑐) = 𝑊𝑄ℎ(𝑐),𝑡
(𝑁)′

, (10)

𝑘𝑖 = 𝑊𝐾ℎ𝑖
(𝑁)

, (11)

𝑢𝑖,𝑚,𝑡 = tanh (
𝑞(𝑐)

𝑇 𝑘𝑖

√𝑑𝑘

) . (12)

We mask (set 𝑢𝑖,𝑚,𝑡 = − ∞) customers which has been visited before timestep 𝑡 ,

and the customers whose demand exceed vehicle remaining capacity.

Finally, we compute the probability of choosing customer 𝑖 at timestep 𝑡 for

vehicle 𝑚 through the softmax function:

𝑝𝑖,𝑚,𝑡 = softmax(𝑢𝑖,𝑚,𝑡) =
𝑒𝑢𝑖,𝑚,𝑡

∑ 𝑒𝑢𝑗,𝑚,𝑡
𝑗

. (13)

 (3) Reward

The reward is defined as the total tour cost:

𝑅(𝒓[𝟏, 𝑴]) = 𝐶𝑜𝑠𝑡(𝒓[𝟏, 𝑴]) (14)

2.4 Training Method

We optimize the parameter by the reinforce gradient estimator:

∇𝜃𝐿(𝜃|𝑠) = 𝛦𝑟∼𝑝𝜃(⋅|𝑠)[(𝑅(𝒓[𝟏, 𝑴]) − 𝑅(𝒓𝑩𝑳[𝟏, 𝑴]))𝛻𝜃𝑙𝑜𝑔𝑝𝜃(𝒓[𝟏, 𝑴]|𝑠)]. (15)

𝑅(𝒓[𝟏, 𝑴]) is the cost of a solution from a deterministic sample decoding of the

model while 𝑅(𝒓𝑩𝑳[𝟏, 𝑴]) is from deterministic greedy decoding. We use the Adam

optimizer to train parameter by minimizing ∇𝜃𝐿(𝜃|𝑠).

3 Results

3.1 Dataset Description and Parameter Setting

The customers locations, demands and time windows are randomly generated from

uniform distribution. Specifically, the depot location and customers are randomly

generated in the square [0,10] × [0,10]. Vehicle capacity is set as 300. Time window

is randomly generated from [0,60] . 𝑝0,𝑖 and 𝑝1,𝑖 are randomly generated from

[0,0.2] and [0,1] separately. Each customer demand is randomly generated from

[0,10] (two vehicles), [0,15] (three vehicles), [0,20] (four vehicles) and

[0,25] (five vehicles). We evaluate our model on 1000 instances. The proposed MAAM

is compared with Genetic Algorithm (GA) and Iterated Local search algorithm (ILS).

3.2 Result Comparison

Table 1 shows the total costs of each model under each testing scenario. Our proposed

model achieves the best performance compared with other baselines both in solution

quality and computation efficiency. Unlike most classical heuristic methods, our model

is robust to problem changes, e.g., when a customer changes its demand value or

relocates to a different position, it can automatically adapt the solution.

Table 1. Performance comparison for MVRPSTW

 Vehicle Cost Time Vehicle Cost Time

GA

2

278.7 6.2(h)

3

267.5 5.4(h)

ILS 181.6 1.1(h) 161.6 56(m)

MAAM 131.5 5(s) 132.3 5(s)

GA 263.5 4.5(h) 281.4 4.1(h)

ILS 4 177.8 35(m) 5 187.9 34(m)

MAAM 139.4 4(s) 146.5 4(s)

4 Conclusion

In this paper, we propose a novel DRL model for solving MVRPSTW problem.

Validated by synthetic experiments, MAAM consistently outperforms traditional

methods with limited computation time. The result further proves that DRL is promising

for solving MVRPSTW problem in real urban logistics applications. In the future

research, it will be an important topic to utilize reinforcement learning to solve online

real-time vehicle routing problem of practical importance.

References

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A., 2017. Deep

reinforcement learning: A brief survey. IEEE Signal Processing Magazine. 34(6), 26-38.

Kool, W., van Hoof, H., & Welling, M., 2018. Attention solves your TSP, approximately.

Avaiable from: arXiv: 1803.08475.

Lau, H. C., Sim, M., & Teo, K. M., 2003. Vehicle routing problem with time windows

and a limited number of vehicles. European journal of operational research. 148(3), 559-

569.

Ibaraki, T., Imahori, S., Nonobe, K., Sobue, K., Uno, T., & Yagiura, M., 2008. An

iterated local search algorithm for the vehicle routing problem with convex time penalty

functions. Discrete Applied Mathematics. 156(11), 2050-2069.

Louis S J, Yin X, Yuan Z Y., 1999. Multiple vehicle routing with time windows using

genetic algorithms. In: Proceedings of the 1999 Congress on Evolutionary

Computation- CEC99. IEEE, 3, 1804-1808.

MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac.,2018.

Reinforcement learning for solving the vehicle routing problem. In Advances in Neural

Information Processing Systems, pp. 9860–9870.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly., 2015. Pointer networks. In:

Advances in Neural Information Processing Systems, pp. 2692–2700.

Wang X, Xu C, Hu X., 2008. Genetic algorithm for vehicle routing problem with time

windows and a limited number of vehicles. In: 2008 International Conference on

Management Science and Engineering 15th Annual Conference Proceedings, IEEE, pp.

128-133.

