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1 Introduction 

Multi-vehicle routing problem with soft time windows (MVRPSTW) is an 

indispensable constituent in urban logistics distribution system (Lau et al., 2003). In the 

last decade, numerous methods for MVRPSTW have sprung up, such as Iterated Local 

Search (Ibaraki et al., 2008), Genetic Algorithm (Louis et al., 1999; Wang et al., 2008), 

but most methods are based on heuristic rules which require huge computation time. 

With the rapid increasing of logistics demand, traditional methods incur the dilemma of 

computation efficiency. Deep Reinforcement Learning (DRL) shows great power in 

solving complex operation problems. Significant attention has also been attracted to 

model the VRP utilizing DRL framework.  

Vinyals et al. (2015) propose the Pointer Network to solve the Travel Salesman 

problem (TSP) which generates a permutation of the input route adopting attention 

mechanism. Nazari et al. (2018) apply a policy gradient algorithm to solve VRP which 

consists of a Recurrent Neural Network decoder coupled with attention mechanism. 

Kool et al. (2018) propose an encoder-decoder framework with multi-head attention 

layers to solve VRP and show how to train this model using reinforce gradient estimator. 

These pioneering researches have gained fruitful results in the field of single vehicle 

dispatching. However, few studies have attempted at employing DRL to solve 
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MVRPSTW because of existing methods only applicable for single agent. To solve this 

problem, we propose a novel reinforcement learning architecture named Multi-Agent 

Attention Model (MAAM).  

2 Methodology 

The MAAM model is essentially an attention-based encoder-decoder model which 

takes road network into account by a masking procedure. The problem definition and 

details of proposed model are described as follows. 

2.1 Problem Definition 

The road network can be regarded as a fully connected graph with randomly 

generated depot and customers in this Euclidean plane. Given vehicle capacity 𝑄 , 

number of vehicles 𝑀 and a fully connected graph 𝐺(𝔙) where 𝔙 = {𝑣0, 𝑣1, . . . , 𝑣𝑁}, 

𝑣0 is the depot with coordinate 𝒙𝟎, 𝑣𝑖(𝑖 ≠ 0) is a customer with coordinate 𝒙𝒊, demand 

𝑑𝑖, time windows (𝑒𝑖 , 𝑙𝑖), early and late penalty coefficients  𝑝0,𝑖, 𝑝1,𝑖. The MVRPSTW 

is to find a set of vertex-disjoint routes 𝒓[𝑚] (𝑚 = 1,2, . . . , 𝑀) for each vehicle starting 

and ending at depot 𝑣0. Under this circumstance, each customer 𝑣𝑖 is served only once 

by one of the vehicles within its time windows. The problem is to find a solution 

𝒓[1, 𝑀] = (𝒓[1], 𝒓[2], . . . , 𝒓[𝑀]) with minimal total cost, which is defined as: 

𝐶𝑜𝑠𝑡(𝒓[1, 𝑀]) = 𝑑𝑠𝑢𝑚(𝒓[1, 𝑀]) + 𝑝𝑠𝑢𝑚(𝒓[1, 𝑀]), (1) 

where 𝑑𝑠𝑢𝑚(𝒓[1, 𝑀]) = ∑ ∑ ||𝒙𝑟[𝑚][𝑏], 𝒙𝑟[𝑚][𝑏+1]||2
|𝒓[𝒎]|−1
𝑏=1

𝑀
𝑚=1   is the total traveling 

cost of all vehicles, 𝑝𝑠𝑢𝑚(𝒓[1, 𝑀]) = ∑ ∑ [𝐼(𝑒𝑖>𝑡̃𝑖) ∗ 𝑝0,𝑖 ∗ (𝑒𝑖 − 𝑡̃𝑖) + 𝐼(𝑡̃𝑖>𝑙𝑖) ∗𝑁
𝑖=1

𝑀
𝑚=1

𝑝1,𝑖 ∗ (𝑡̃𝑖 − 𝑙𝑖)] denotes the total penalty for time window constraints, 𝑡̃𝑖 represents the 

total travel time when a vehicle arriving at customer 𝑖. 

2.2 Encoder Framework 

In MAAM model, the encoder firstly computes initial customer embeddings ℎ𝑖 

through a learned linear projection with parameters 𝑊1 and 𝑏1: 

ℎ𝑖 = 𝑊1[𝒙𝒊, 𝑑𝑖, 𝑡̂𝑖,0, 𝑡̂𝑖,1] + 𝑏1. (2) 

Then the embeddings are updated using multiple attention layers. Each attention 

layer carries out a multi-head attention and a feed-forward operation. The attention 



mechanism can be interpreted as a weighted message passing algorithm between 

customers in a graph. We compute the attention value 𝑍  times with different 

parameters and denote the results by ℎ𝑖𝑧
′   for 𝑧 ∈ {1,2, … , 𝑍} .The final multi-head 

attention value for customer 𝑖 is a function of ℎ1, … , ℎ𝑛: 

ℱ𝑖(ℎ1, … , ℎ𝑛) = ∑ 𝑊𝑍
𝑂ℎ𝑖𝑧

′

𝑍

𝑧=1

. (3) 

The remainder of attention layer is a feed-forward operation 𝐹  with skip-

connection:  

ℎ̂𝑖 = ℎ𝑖 + ℱ𝑖(ℎ1, … , ℎ𝑛),   (4) 

ℎ𝑖
(1)

= ℎ̂𝑖 + 𝐹(ℎ̂𝑖), (5) 

where the operation 𝐹 is defined as: 

𝐹(ℎ̂𝑖) = 𝑊1
𝑓

Re L u(𝑊2
𝑓

ℱ𝑖(ℎ1, … , ℎ𝑛) + 𝑏0
𝑓

) + 𝑏1
𝑓

. (6) 

We compute equations (9-10) λ times and acquire {ℎ𝑖
(𝜆)

, 𝑖 = 1, … , 𝑛}. Finally, the 

encoder computes an aggregated embedding of the input customers as the mean of the 

final output layer: 

ℎ̄(𝑁) =
1

𝑛
∑ ℎ𝑖

(𝜆)
𝑁

𝑖=1
. (7) 

2.3 Decoder Framework   

In decoder part, the agents perceive the state of the environment and each other. 

Then they decide a sequential action set based on the knowledge obtained through this 

perception.  

(1) State 

The global state can be divided into environment state and agent state. Environment 

state contains the final customers embedding ℎ̄(𝑁)  and customers which have been 

already visited. The agent state consists of the current vehicle location and remaining 

capacity.  

At each decoding timestep, the vehicle chooses the customers to visit in the next 

step. After visiting customer 𝑖, the remaining capacity 𝑑̂𝑚,𝑡 of vehicle 𝑚 is updated. 



In order to utilize information of state, we define multiple vehicles context embedding 

ℎ(𝑐),𝑡
(𝑁)

 for the decoder at timestep 𝑡 which comes from the encoder and the vehicle output 

up to timestep 𝑡:  

ℎ(𝑐),𝑡
(𝑁)

= [ℎ̄(𝑁) ; ℎ𝑟𝑡−1,1
(𝑁)

; 𝑑̂1,𝑡 ; ℎ𝑟𝑡−1,2
(𝑁)

; 𝑑̂2,𝑡 ; … ; ℎ𝑟𝑡−1,𝑀
(𝑁)

; 𝑑̂𝑀,𝑡]. (8) 

(2) Action 

Action for each vehicle represents the choice of next customer to be visited at 

timestep 𝑡 . Firstly, we compute a new multiple vehicles context embedding ℎ(𝑐),𝑡
(𝑁)′

 

using the multi-head attention mechanism: 

 ℎ(𝑐),𝑡
(𝑁)′

= ℱ(ℎ(𝑐),𝑡
(𝑁)

). (9) 

Then compute the compatibility of the query 𝑞(𝑐) with all customers:  

𝑞(𝑐) = 𝑊𝑄ℎ(𝑐),𝑡
(𝑁)′

, (10) 

𝑘𝑖 = 𝑊𝐾ℎ𝑖
(𝑁)

, (11) 

𝑢𝑖,𝑚,𝑡 = tanh (
𝑞(𝑐)

𝑇 𝑘𝑖

√𝑑𝑘

) . (12) 

We mask (set 𝑢𝑖,𝑚,𝑡 =  − ∞) customers which has been visited before timestep 𝑡 , 

and the customers whose demand exceed vehicle remaining capacity. 

Finally, we compute the probability of choosing customer 𝑖  at timestep 𝑡  for 

vehicle 𝑚 through the softmax function: 

𝑝𝑖,𝑚,𝑡 = softmax(𝑢𝑖,𝑚,𝑡) =
𝑒𝑢𝑖,𝑚,𝑡

∑ 𝑒𝑢𝑗,𝑚,𝑡
𝑗

. (13) 

 (3) Reward 

The reward is defined as the total tour cost: 

𝑅(𝒓[𝟏, 𝑴]) = 𝐶𝑜𝑠𝑡(𝒓[𝟏, 𝑴]) (14) 

2.4 Training Method 

We optimize the parameter by the reinforce gradient estimator: 

∇𝜃𝐿(𝜃|𝑠) = 𝛦𝑟∼𝑝𝜃(⋅|𝑠)[(𝑅(𝒓[𝟏, 𝑴]) − 𝑅(𝒓𝑩𝑳[𝟏, 𝑴]))𝛻𝜃𝑙𝑜𝑔𝑝𝜃(𝒓[𝟏, 𝑴]|𝑠)]. (15) 

𝑅(𝒓[𝟏, 𝑴]) is the cost of a solution from a deterministic sample decoding of the 



model while 𝑅(𝒓𝑩𝑳[𝟏, 𝑴]) is from deterministic greedy decoding. We use the Adam 

optimizer to train parameter by minimizing ∇𝜃𝐿(𝜃|𝑠). 

3 Results 

3.1 Dataset Description and Parameter Setting 

The customers locations, demands and time windows are randomly generated from 

uniform distribution. Specifically, the depot location and customers are randomly 

generated in the square [0,10] × [0,10]. Vehicle capacity is set as 300. Time window 

is randomly generated from [0,60] . 𝑝0,𝑖  and 𝑝1,𝑖  are randomly generated from 

[0,0.2]  and [0,1]  separately. Each customer demand is randomly generated from 

[0,10]  (two vehicles), [0,15]  (three vehicles), [0,20]  (four vehicles) and 

[0,25] (five vehicles). We evaluate our model on 1000 instances. The proposed MAAM 

is compared with Genetic Algorithm (GA) and Iterated Local search algorithm (ILS). 

3.2 Result Comparison 

Table 1 shows the total costs of each model under each testing scenario. Our proposed 

model achieves the best performance compared with other baselines both in solution 

quality and computation efficiency. Unlike most classical heuristic methods, our model 

is robust to problem changes, e.g., when a customer changes its demand value or 

relocates to a different position, it can automatically adapt the solution. 

Table 1. Performance comparison for MVRPSTW 

 Vehicle Cost Time Vehicle Cost Time 

GA  

2 

278.7 6.2(h)  

3 

267.5 5.4(h) 

ILS 181.6 1.1(h) 161.6 56(m) 

MAAM 131.5 5(s) 132.3 5(s) 

GA  263.5 4.5(h)  281.4 4.1(h) 

ILS 4 177.8 35(m) 5 187.9 34(m) 

MAAM  139.4 4(s)  146.5 4(s) 

4 Conclusion 

In this paper, we propose a novel DRL model for solving MVRPSTW problem. 

Validated by synthetic experiments, MAAM consistently outperforms traditional 



methods with limited computation time. The result further proves that DRL is promising 

for solving MVRPSTW problem in real urban logistics applications. In the future 

research, it will be an important topic to utilize reinforcement learning to solve online 

real-time vehicle routing problem of practical importance.  
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