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Introduction 

With the advancement of technology and the appeal to future transportation system 
construction, automation and electrification have become inevitable trends in the 
development of intelligent vehicles. Autonomous vehicles liberate the drivers’ workforce and 
possess the potential to be controlled in a centralized manner for the system-level benefits, 
while electric vehicles are environmentally friendly in both pollution discharge and noise 
making. It is envisioned that automated electric taxis will play a vital role in future 
transportation systems for providing customized travel service. Stakeholders of travel service 
industry are adapting to this coming new trend around the world. Waymo, a company 
developing autonomous vehicle, has taken a critical step in the commercialization of 
autonomous vehicles in the ride-hail service by allowing riders in greater Phoenix to book 
and pay for a ride in a driverless taxi using Waymo’s technology. Uber, a ride-hail company, 
restarted autonomous vehicle testing on public roads in Pittsburgh. It is reported that all taxis 
in Beijing will be replaced by electric vehicles with fast-battery-swapping or fast-charging in 
the next 2-3 years (Sohu, 2019). City Shenzhen in China mandatorily require newly 
registered ride-hailing vehicles to be electric vehicles (Bituauto, 2019). 

This paper aims at solving the online operation problem of electric automated taxi fleets. 
This is a novel topic about fleet operation, which is not well-solved, while some researchers 
have conducted preliminary exploration in the existing literature. Four categories of methods 
are employed. The first one builds models and uses exact optimization to achieve fleet 
control (Ramezani and Nourinejad, 2017; Billhardt and Bajo, 2019). The second type uses 
knowledge of markov property. It models the dispatching problem as dynamic programming 
and solves by approximate dynamic programming (Godfrey and Powell ,2002a; Godfrey and 
Powell, 2002b). The third category takes advantage of reinforcement learning and intends to 
tackle large scale problem (Xu et al., 2018; Jin et al., 2019; Ke et al., 2019). The last one 
utilizes rule-based principles or simulation to manage mobility services (Ota et al., 2016).  

To verify the effectiveness of proposed method, we first design a hypothetical network 
with two nodes and two origin-destination (OD) pairs. The demands in one OD pair are 
relatively stable and in another OD pair are with peak-hour characteristic, and in such setting 
the spatial and temporal heterogeneity can be captured. We compare our framework with a 
myopic assignment model treated as a benchmark. The results show that the framework 



 

2 
 

outperforms the myopic model in realistic cost where the AETs can be dispatched to the zone 
with peak-hour demands in advance, which greatly enhance the performance of online 
operation system. Further experiments are conducted with a realistic road network in 
Tongzhou, Beijing, where the parameters of all 408 electric taxis are borrowed from the true 
dataset. Extensive managerial insights are drawn from the tests accordingly.  
 

Methodology 
This study focuses on proposing a methodological framework to solve the online 

operation problem of electric automated taxi fleets. Specifically, the operation area is divided 
into a set of hexagons where the demands are generated stochastically, and certain number of 
electric automated taxis are distributed initially. A centralized control system is established to 
manage the whole taxi fleet. We discretize the time horizon into a set of operation intervals, 
and in each interval the taxis can be assigned to serve the demands generated in the 
corresponding regions, dispatched to other areas to eliminate supply-demand imbalance and 
forced to travel to charging stations to get refueled. In each operation interval, our framework 
includes two stage. At the first stage, we decide the number of taxis to serve demands, to be 
dispatched and to be recharged in each hexagon; this task is fulfilled with a reinforcement 
learning framework such that the information of current states, e.g., the distribution of 
demands, the distribution of vehicles, state of charge (SOC) of taxis, occupancy of charging 
stations, are incorporated to approximate the future system costs for aiding the current 
decision-making. At the second stage, a combinatorial optimization model is proposed to 
precisely decide the action of the each taxi.  Each taxi will be assigned to a specific customer, 
dispatched to a specific area, or forced to a specific charging station and charge an amount of 
electricity. The results from the first stage acts as a reference such that the action obtained by 
the combinatorial optimization model generates similar number of taxis in serving customers, 
dispatching and recharging in each hexagon. In this way, the optimization model can avoid 
myopic decisions in that it considers the impact of current actions on future system states. 
Two system targets, i.e., the minimization of total system cost (including customer waiting, 
customer drop and taxi operating) and the maximization of agency profit, are considered in 
this study. Moreover, once the training is done, the optimization in both stages can be 
accomplished instantaneously, which is suitable for the implementation of online operation 
where timely decisions are required.  
 

Results 

 
(a) 
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(b) 

 
(c) 

Fig. Indexes under different customer waiting variation. (a) Realistic Cost. (b) Service Rate. (c) 
Average Waiting Time. 

The realized costs of RL are relatively lower than the values of MY and ND under 
various customer waiting time variance, attaining 5%-15% improvement compared to myopic 
model and 10%-35% improvement compared to nearest distance model. The results 
demonstrate that the RL can reduce system cost by dispatching under diverse scenarios. At 
the meantime, RL maintains a relatively satisfactory customer serving rate. By means of 
beforehand dispatching, the system with RL achieves lowest customer waiting time compared 
to MY and ND, validating effectiveness of such method. 
 

Conclusion 
We investigate online dispatching and charging problem of large-scale electric automated 

taxi fleets, which is challenging under various stochasticity. A two-stage framework is 
proposed, combining reinforcement learning and combinational optimization. The results 
show that our framework outperforms benchmarks in multiple indexes, i.e., realistic cost, 
serving rate and customer waiting time. It has capability to dispatch in advance to eliminate 
hysteresis of handling imbalance, smooth charging demand to eliminate waiting queue at 
stations and achieve instant decision procedure. Further research can incorporate congestion 
into travel time among areas. Another direction is to synergistically optimize charging station 
planning and AETs’ operation. 
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