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1 Introduction

Space-time continuity and availability offered by mobile sensors make them suitable to study the funda-
mental diagrams (FD) of existing traffic facilities individually. Seo et al. [5] presented a method to infer
a triangular fundamental diagram of a freeway section using only probe trajectories and jam density
kjam. The method requires a minimum of three steady traffic states between each pair of consecutive
trajectories. For signalized links, this requirement cannot be respected due to regular and systematic
traffic interruption. The method is therefore not applicable. At the same time, signal control is rather
an enabling factor to infer traffic states from sample trajectories thanks to the resulting recurrence of
clear and stationary traffic states in a cyclical fashion. When trajectories are aggregated over time based
on the respective cycle crossing time, traffic states can be inferred from each elementary region of a
space-time grid using an extension of Edie’s traffic stream measurements definition [1]. Time based
aggregation allows inference on temporary sparse trajectories and reflects long-term characterization of
fundamental diagrams.

First, a new clustering approach is presented following improvement on a previous method used in [2]
and [3]. Next, Edie’s traffic states measurement from disaggregated full-coverage space-time diagrams
are extended to aggregated sampled space-time diagrams to produce scatter plots that can be fitted to
a fundamental diagram. Additional considerations for dimensional homogeneity and scale proportion-
ality are also discussed. The method is tested with a six months data set of real trajectories and the
obtained capacity of the fundamental diagram is validated against a capacity obtained from a few hours
of automated video measurement.

2 Methodology

Even though trajectories are first clustered then accumulated, we present the accumulation first for the
sake of clarity.

2.1 Trajectories accumulation

Figure 1a illustrates the principle of trajectories accumulation1 belonging to a same signal program
(cluster) and Figure 1b illustrates the accumulation of accumulation, i.e. accumulation of clusters of
trajectories. The clustering identifies the trajectories that occurred during the same signal program. It
produces as many clusters as there were fixed signal timing patterns during a typical day. A cluster i
is therefore identified by a time interval of the day, a cycle length Ci and a green window defined by its
start and end seconds within the cycle [gsi, gei]. When trajectories belonging to a same cluster i (i.e.
signal program) are isolated, they can be shifted in time by the multiples of Ci (a modulo operation)
to fit into the same artificial cycle. To complete the accumulation of all trajectories from all clusters in
one space-time plot, every cycle accumulation is shifted with the respective gsi so that the green start

1We opt for the term ”accumulation” over ”aggregation”, as we think that aggregation supposes the loss of some
information, whereas in our case all trajectories information is technically still present after grouping them in one plot
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becomes the time origin (Figure 1b).

The obtained plot contains all trajectories that belong to a cluster. Space origin is the stop line and
time origin is the relative green start of each trajectory. In particular, flowing at capacity downstream
after the green start (in the positive space and time domains) and complete congestion before the stop
line and before the green start (in the negative pace and time domains) are the two mostly visible traffic
states in the accumulated trajectories plot.

Figure 1: (a) Accumulation of trajectories belonging to a same signal program and (b) Accumulation of
different clusters in a green-start referenced time scale

2.2 Trajectories’ clustering

The clustering of trajectories is based solely on their respective stop line crossing time, as that instant is
a direct indicator of a green signal. Every trajectory can cross the stop line during a cycle of unknown
length, however, possible cycle lengths lay within a certain known range. Therefore, a series of supposed
observations is created for every trajectory, each one corresponding to a cycle length candidate (CLC).
For each candidate, it’s possible then to obtain the crossing time inside the cycle (CCS: Cycle Crossing
Second) for the assigned CLC as the rest of integer division of the absolute time by the cycle length.
In order to improve the clustering reliability, a third feature is added to the dataset for clustering in
addition to CLC and CCS, which is the time of the day (TOD). It is assumed that traffic signaling follows
a schedule of programs where a program is served continuously during a certain time before switching
to another continuous program. This implies that trajectories belonging to a same program should have
occurred during a same time window of the day. It’s likely that the clustering assigns more than one
supposed observation (different CLCs) to a same trajectory. Ideally, the closest candidate to its respec-
tive cluster should be kept. In this research, we keep the candidate belonging to the biggest cluster in size.

The proposed concept is independent from the clustering method, as several clustering algorithms
and approaches in the literature and practice produce the desired result. In this research, the single
linkage clustering [4] is adopted. The three features (CLC, CCS, TOD) are derived from the stop line
crossing timestamp. The features are then normalized with the right scale and range. With a calibrated
hierarchy threshold and a calibrated minimum of observations per cluster, the algorithm creates a first
set of clusters. A dataset with only one cluster per trajectory is then extracted to make sure to select
the best CLC for each trajectory.
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2.3 Adaptation of Edie’s definition

The Edie’s generalized definitions of traffic states from space-time plane regions can be adapted to our
problem. For a given region A 2 that is observed n times and crossed at each observation i by mi vehicles,
we can define the average flow, density and speed as follows:
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where |A| is the surface of the area, di,j and ti,j are respectively the distance and time of travel of the
trajectory j inside the region A during the observation i.

(a) (b)

Figure 2: An observed region in the accumulated plot is a superposition of single observations among all
actual trajectories

The accumulated space-time plot resulting from the clustering in the previous step (bottom right
plot in Figure 1) is a superposition of single observations among all actual trajectories as illustrated in
Figure 2a. We aim to perform an equivalent measurement of aggregated flow qAgg and density kAgg in
each region A. Let oi ∈ [1,mi] be the value of the j index of the observed vehicle in the observation i.
The aggregated quantities are defined as follows:

qAgg =

∑
i≤n

di,oi

|A|
; kAgg =

∑
i≤n

ti,oi

|A|
; vAgg =

∑
i≤nA

vi,oi

nA
(2)

The displacement di,oi , the travel time ti,oi and the speed vi,oi of the vehicle oi in the observation i
(Figure 2b) are directly measurable, which makes the defined quantities qAgg, kAgg and vAgg also directly
measurable. The dimensions of qAgg and kAgg are [observations per unit of time] and [observations per
unit of space] respectively. They are dimensionally not homogeneous to flow and density, the relationship
between them remains nevertheless comparable to the relationship between flow and density under certain
conditions as discussed below. We define the following ratios between full-scale average quantities and
measured aggregated quantities:

ρq =
q

qAgg
=

∑
i≤n

mi d̃i

n
∑
i≤n

di,oi
; ρk =

k

kAgg
=

∑
i≤n

mi t̃i

n
∑
i≤n

ti,oi
(3)

2All quantities and equations are for a single region, all the regions are the same size, we therefore omit the A index for
the sake of simplicity
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ρq and ρk have the same physical dimension: [number of vehicles per observation]. In a certain way, they
indicate the mathematical inverse of the observation rate i.e. the penetration rate of the used sampled
trajectories dataset when observing the region A. The exact equivalence between the (k, q) relationship
and the (kAgg, qAgg) relatipship is an immediate result of the equality between ρq and ρk in all the
regions of the plot. In order to establish that equality, we first make the assumption that oi represents
an average vehicle - in terms of travel time and distance - of the total group of vehicles in the observation
i in the region A. This allows to establish the following approximations:

d̃i ≈ di,oi ; t̃i ≈ ti,oi ;
d̃i

t̃i
≈ di,oi
ti,oi

= vi,oi (4)

We can then simplify ρq and ρk:

ρq =

∑
i≤n

mi di,oi

n
∑
i≤n

di,oi
=
md

n
; ρk =

∑
i≤n

mi ti,oi

n
∑
i≤n

ti,oi
=
mt

n
(5)

where md and mt are respectively the distance-weighted and the time-weighted average values of m. To
illustrate these averages, we consider a region with a certain number of crossing vehicles m. If we observe
more slower than faster vehicles, there would be more region crossing times ti,oi that are high, and less
displacements di,oi that are high, thus mt would be bigger than md, and inversely. This is interpreted
by a relationship between the dispersion of speed of observed vehicles vi,oi and the equality between md

and mt, consequently between ρq and ρk. We should therefore take more into consideration the regions

with less disperse speeds to get closer to the equality between q
qAgg and k

kAgg . This result is formalized
by a weight used when fitting the scatter of regions to a fundamental diagram model.

3 Results

The data set of sampled trajectories used for testing corresponds to the first half of 2019 at the inter-
section Amalienplatz in Braunschweig, Germany on the direct southbound movement. The obtained
number of observations (accumulated cycles) is n=1425. Automated computer-vision detection and
tracking used in a previous case study at the same intersection [3] allowed to measure an average jam
density during 4 hours of video recording on a day that falls within the collection period of the trajecto-
ries. The obtained value kjam is used to adjust the scale of the probe based fundamental diagram as in [5].

In Figure 3-a and 3-b accumulated trajectories are augmented respectively with the regions’ sample
sizes and the inverse of the standard error of speed (which is used as fitting weight). Regions with sam-
ple sizes below the average are eliminated. Figure 3-c and 3-d show two tested fittings on the obtained
scatter, once using an exponential v-k model and once using a triangular q-k model. The upscaling of the
q-k triangular FD using the ratio between kjam and the measured kjam results in a capacity of 1499.069
[veh/h] which is close to the average observed value of 1551.052 [veh/h] from a single-day automated
video measurement [3].

4 Conclusion

The presented method allows to construct an empirical FD from sampled trajectories at signalized
intersections through clustering and accumulation. The main contribution is the purely empirical mea-
surement of intersections’ capacities over a long period, which provides a reliable figure as important
input in signal control planning, traffic modeling or simulation of existing networks. The few assump-
tions made to reach the full scale estimation shall be validated with an in-depth empirical and simulation
study. The sensitivity of the result to the resolution of regions grid should also be studied for a better
fine-tuning.
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Figure 3: Results with a real data set: condensed trajectories augmented with region sample sizes (a)
and regions homogeneity indicator (b), obtained v-k (c) and q-k (d) FD scatter with two fittings
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