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1. Introduction 

Connected and autonomous vehicles are expected to improve mobility and safety in transportation 
networks. However, these vehicles are not fully deployed in practice at large-scale. Thus, the level and 
significance of these improvements are still unknown to researchers. Traffic simulations are the only 
available tools to reproduce traffic flow with a mixed fleet of autonomous (AV), connected (CV), and 
human-driven (RV) vehicles without connectivity. The impacts of connectivity and automation of 
vehicles on congestion have been widely studied at the segment level (1–4). However, only a few studies 
have investigated these impacts on traffic flow at the network level. Most of these studies consider a 
uniform distribution of connected or autonomous vehicles over the network, which is not a realistic 
assumption (5). An example of this non-uniform distribution of traffic flow is the presence of adaptive 
(en-route) users (6,7). Connected and autonomous vehicles (CAV) and a portion of RVs are expected to 
have this technology. This study aims to realistically observe the impacts of connectivity and automation 
of vehicles on traffic flow at the network level by incorporating adaptive fundamental diagrams in the 
mesoscopic simulation tool of DYNASMART-P (8). This study also incorporates different microscopic 
modeling frameworks for various vehicle types (i.e., RV, CV, AV) and captures the collective effects of 
the interactions between them on traffic flow dynamics. The NGSIM data is used to establish different 
sets of parameters for the microscopic models of heterogeneous drivers for RVs and CVs (9). The main 
contribution of this study is to incorporate a simulation model that captures the impacts of CAVs by 
considering the following unique features: 
 
• A mixed traffic of RVs, CVs, and AVs for large-scale applications 
• Heterogeneous drivers for RVs and CVs in terms of acceleration behavior (calibrated by real 
trajectories) 
• Spatially/temporally-varying distributions of RVs, CVs, and AVs over the network 
• Capacity variations at intersections in the presence of different shares of CAVs, which is mainly 
neglected in the literature at the network level (10,11) 
• Adjusting traffic flow models in arterials due to the presence of CAVs 
• CAVs as en-route users 

2. Simulation Framework 

The stochastic acceleration model of Hamdar et al. (12), the Intelligent Driver Model (13), and the 
model of Talebpour and Mahmassani (1) are utilized to model the acceleration behavior of RVs, CVs, 
and AVs, respectively. In order to obtain the equilibrium relation between velocity and spacing, all 
vehicles should acquire the same and constant speed over each time interval (14). Therefore, the spacing 
of each vehicle type (i.e., RV, CV, AV) with its leading vehicle is estimated as below.  
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where 𝛼𝛼 , 𝑤𝑤𝑐𝑐 , 𝛼𝛼 , and 𝑠𝑠0  are parameters to be estimated. The congested part of the macroscopic 
fundamental diagram can be obtained by following relation. 
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where 𝑘𝑘 is the density, 𝑙𝑙𝑣𝑣𝑣𝑣ℎ is the length of vehicle, and 𝑠𝑠𝑖𝑖𝑖𝑖 is the spatial gap of the vehicle type 𝑖𝑖 with 
driver class 𝑗𝑗 with its leading vehicle. As AVs are driverless, 𝑗𝑗 is considered 1 for them. 𝑝𝑝𝑖𝑖𝑖𝑖 denotes the 
proportion of vehicles with type 𝑖𝑖 and driver class 𝑗𝑗 on the segment. The acceleration model of different 
vehicle types are calibrated against Next Generation Simulation (NGSIM) data (9). With an assumption 
that all vehicles on a segment are from the same vehicle type and are driven by one specific driver class 
(10 RV driver types and 6 CV driver types), the calibrated fundamental diagrams are demonstrated in 
Figure 1. 
 

  

Figure 1. a) Flow-density and b) speed-density calibrated relationships at the equilibrium 

To perceive traffic flow dynamics in a connected and automated environment from the micro-
scale to the meso-scale in the DYNASMART-P simulation tool, the spacing-density relationship 
presented in Equations 4 is used. For each link in the network, the counts of different vehicle types with 
specific drivers are estimated at each time interval. Using the proportion of this count for each driver 
and vehicle type to the total number of drivers on the link, a nonlinear equation is solved using golden 
section method (15), to find a link speed that results into an average spacing between different vehicles. 
For each vehicle type and driver class, a desired spacing can be estimated based on the link speed and 
Equations 1-3. In addition, to consider the presence of a shared road network with heterogeneous drivers 
on arterials, an adjustment factor is derived for each vehicle type to relate traffic models of CAVs to 
RVs with the assumption that CAVs have the same impact on the traffic flow in freeways and arterials. 
Furthermore, the current study modifies the mesoscopic simulation tool to account for variable 
maximum flow rates at intersections depending on the share of passing vehicles and their driver classes. 

3. Numerical Experiments 

The presented simulation frameworks are applied to AM peak period of the Chicago downtown network 
with 1,578 nodes and 4,805 links. Figure 2 illustrates the NFD graphs (Figure 2a-2d) and hysteresis 
loop area (Figure 2e) for different proportions of RVs, CVs, and AVs in the network. According to this 
figure, connectivity and automation of vehicles facilitate the network recovery from congestion. In 
addition, the network faces a reduction in the maximum density and the area of hysteresis loop by an 
increase in MPR of CVs or AVs, or both. Therefore, a higher stability in the recovery phase is observed 
for the scenarios with higher CAV proportions. The significant reduction in hysteresis loop area by 
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having more CAVs denotes that the gridlock dissipation and system recovery are accomplished faster 
for higher MPRs of CAVs. According to Figure 2b, with a mixed traffic consists of all three vehicle 
types, the scenario with equal penetration rates of CVs and AVs (25%) falls between the two scenarios 
of 50% CV and 50% AV. This result highlights the superiority of CVs to the RVs and AVs to the CVs 
in mitigating the traffic congestions in the network with a mixed traffic stream. Furthermore, it shows 
the applicability of the proposed methodology to consider a traffic mix including all three types of 
vehicles. 
 

  
(a) (b) 

  
(c) (d) 

  
(e) 

Figure 2 (a-d) NFD and (e) maximum density and area of hysteresis loop for different MPRs of RVs, 
CVs, and AVs 
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4. Conclusion 

This study updates the DTA simulation tool of DYNASMART-P by incorporating adaptive fundamental 
diagrams considering spatial- and temporal-varying distributions of different vehicle types with 
heterogeneous drivers. This study considers the movement capacity variations at intersections due to a 
mixed vehicle fleet. Adjustment factors are also presented to modify the fundamental diagram in 
arterials when CAVs occupy a portion of arterial links. The numerical experiments of the large-scale 
application show that with a constant proportion of RVs in the network, higher MPRs of CAVs lead to 
a lower maximum density and smaller hysteresis loop area, meaning a faster network recovery from 
congestion. In addition, higher proportions of CAVs relative to RVs result in a lower maximum density, 
slightly higher maximum flow, and a more stable network. A mixed traffic condition with all three 
vehicle types shows a different impact from the scenarios with only two vehicle types. The injection of 
AVs in the network is also more effective on traffic flow conditions than CVs. Therefore, it is necessary 
to consider different shares of CAVs to investigate a realistic impact of these vehicles with 
heterogeneous drivers on traffic flow at the network level. 
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