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Introduction 

Crowd-shipping (CS) is a platform that connects senders’ delivery requests with occasional 
couriers who are willing to deliver goods using their available vehicle capacities or professional 
couriers, such as Deliv, Postmates, PiggyBee etc.. 

Some researchers have studied the characteristics of CS senders and couriers by survey 
data. People who earn less money, use multiple social media outlets want to be couriers, and they 
prefer requests that are not for long distance and with flexible time windows (Le et al., 2019; Miller 
et al., 2017; Marcucci et al., 2017; Paloheimo et al., 2016). Punel and Stathopoulos (2017), Frehe 
et al. (2017), and Punel et al. (2018) find that youth, full-time employed people, and people with 
a strong sense of environmental concerns prefer CS service. Currently, there is very limited 
understanding of the two-sided CS market (senders and couriers). 

Therefore, this paper aims to analyze the real-world CS data, which was collected between 
April 2015 and August 2018 from a CS platform. Using the Atlanta city, GA as a case study, the 
investigation focuses on these aspects: (1) the CS pricing model; (2) spatial and temporal 
distribution of the CS delivery requests; and (3) characteristics of senders’ requests and couriers’ 
preferences. 

The results conclude the advantage of the CS pricing model compared to conventional 
delivery (CD) service, the obvious imbalanced spatial and temporal distribution of delivery 
requests by zipcode, the discrepancy between senders’ requests and couriers’ preferences, and the 
good predictive performance of two DL methods. 

Methodology 

Long short-term memory neural network (LSTM) considers the dependent variable in one 
timestamp not only depends on explanatory variables in current timestamp but also in previous 
timestamps (Williams and Zipser, 1989; Sutskever et al., 2009). It enables storage of long-term 
information with a series of memory cells in hidden layers (Hochreiter and Schmidhu, 1997). The 
standard structure of LSTM includes one input layer, one or more hidden layers, and one output 
layer. The forget gate 𝑓𝑓𝑡𝑡, input gate 𝑖𝑖𝑡𝑡, and output gate 𝑜𝑜𝑡𝑡 on hidden layers are used to control and 
change cell state 𝐶𝐶𝑡𝑡. When input data, 𝑓𝑓𝑡𝑡 determines which information should be removed from 
the previous cell state 𝐶𝐶𝑡𝑡−1, 𝑖𝑖𝑡𝑡 decides what information should be added to the cell state 𝐶𝐶𝑡𝑡, and 
𝑜𝑜𝑡𝑡 decides which information from the current cell state 𝐶𝐶𝑡𝑡 is used to create the output ℎ𝑡𝑡.  



Bidirectional long short-term memory neural network (BDLSTM) is the extension of 
LSTM by adding hidden layers in the backward direction (Zhu et al., 2018). The final output is the 
combination of outputs from forward and backward layers (Li et al., 2017).  

Results 

CS Pricing model 

The basic CS pricing model need to consider package size, while the conventional delivery 
(CD) pricing model, taking the FedEx as the example, considers package weight. Therefore, we 
firstly convert package size to dimensional weight as the chargeable package weight, then compare 
the prices of the CS and the FedEx for small (with a dimensional weight of 5 lbs), medium (45 lbs) 
and large (150 lbs) packages respectively. Figure 1 indicates the obvious advantage of the CS 
pricing model. Especially when packages are required to be delivered within short time periods. 

 
(a) Delivery price of a small size package (5 lbs) 

 
(b) Delivery price of a medium size package (45 lbs) 



 
(c) Delivery price of a large size package (150 lbs) 

Figure 1 Comparison of pricing models between CS and CD service 

Spatial and temporal delivery patterns of CS 

We group the CS delivery requests into four time periods of a day, 0:00-6:00am, 6:00am-
12:00pm, 12:00-18:00pm, and 18:00pm-0:00am, to analyze temporal patterns. Taking the CS 
delivery production as the example, Figure 2(a) finds the significant variations in spatial 
distribution, and Figure 2(b)-(e) show the distribution over four time periods is also different. The 
same way to analyze CS delivery attraction, and we also find the obvious imbalanced spatial and 
temporal distribution. 

 
(a) Spatial distribution of delivery production 

       
      (b) 0:00-6:00am          (c) 6:00am-12:00pm         (d) 12:00-18:00pm      (e) 18:00pm-0:00am 

Figure 2 Spatial and temporal distribution of delivery production by zipcode 

Discrepancy between CS senders’ and couriers’ preferences 



From delivery distance, package size, delivery price, declared value, and time window 
aspects, this paper analyzes the characteristics of CS senders’ requests and couriers’ bidding 
preferences. For the delivery distance, Figure 3 finds senders prefer to send requests within 25 
miles, while couriers prefer to bid requests within 26-100 miles. For package size, delivery price, 
declared value, and time window, applying the same way to analyze and shows senders prefer to 
send package no more than large size, with cheaper price, smaller declared value, and strict time 
windows, while couriers prefer to bid packages no less than large size, with higher price, bigger 
declared value, and flexible time windows. 

 
                 (a) CS delivery requests                            (b) the number of CS bids per delivery 

Figure 3 Distribution of CS demand and supply by delivery distance 

Prediction of delivery productions with deep learning methods 

Due to the imbalanced distribution of delivery production over 31 zipcode, the delivery 
data in the top 5 zipcode are used to build LSTM and BDLSTM models to predict short-term 
delivery production. The explanatory variables include delivery production, weather condition, 
and four time periods. In order to validate the DL methods, some traditional parametric and ML 
models are also trained by Python. The results demonstrate that LSTM and BDLSTM outperform 
other methods in terms of Root Mean Squared Error (RMSE). 

Conclusion 

This study firstly conducted a comprehensive preliminary investigation based on one real-
world CS data, then predicted delivery production and destination choice by DL and ML methods. 

Based on descriptive analysis, we find the advantage of the CS pricing model, the obvious 
imbalanced spatial and temporal distribution of delivery requests, and the discrepancy between 
senders’ and couriers’ preferences. For the prediction of delivery production and destination choice, 
the developed LSTM, and BDLSTM obtain good predictive performance. In particular, BDLSTM 
predicts a little better than LSTM.  

The contributions of this paper are multitude. First, the comparison of the CS pricing model 
and the FedEx pricing model is beneficial to understand the novelty service. Second, the 
discrepancy between senders’ requests and couriers’ bidding preferences is unique to CS as 
compared to ridesourcing. Third, it is among the first to apply DL methods to CS delivery 
production forecasting that is based on one real-world CS data. 



However, there are some limitations. First, this study does not consider the social-economic 
characteristics of each zipcode, senders, and couriers. Second, the proposed DL methods are 
unable to explain how important factors affect delivery demand. Finally, we still have limited 
understanding of the CS. In particular, why is CS not as popular as the ridesourcing? How to match 
senders’ requests with couriers’ preferences?  
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