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Introduction 

An efficient supply network in the healthcare system not only offers high 
contribution to economy, but also plays key roles to promote the health and well-being 
of citizens. It is hopeful that healthcare system offers the right products to the right 
patients at the right time. However, due to the complexity of the healthcare system, it 
will face some significant challenges, such as the timeliness for delivery, accuracy for 
products, uncertainty for demand, and so on. 

To reduce the investment cost and improve the customer satisfaction, vendor 
managed inventory (VMI) was considered into the healthcare system (Bhakoo et al., 
2012), and later received more attention on making healthcare system more demand 
driven (Krichanchai and MacCarthy, 2017). When the manufacturers and vendors 
utilize VMI contracts to increase their market share, the uncertainty of demand always 
affects the healthcare inventory and service level, where VMI contracts become the 
tools to switch potential lost sales into backorders, thus, improving stock-out 
management (Yao et al., 2010). Applying the stochastic variables is an important 
method to describe the uncertainty of demand using VMI policy, and is effective for 
many research area (Rad et al., 2014; Alawneh and Zhang, 2018). 

Motivated by a real-world problem arising from a world-leading medical implants 
company, we design an integrated location-inventory supply network in a healthcare 
system under stochastic demands, where VMI policy and direct delivery policy are 
combined to offer products to hospitals, as is shown in Figure 1. The company supplies 
three types of medical implants (a heart valve, an artificial knee, and hip) for 147 
hospitals located in a province in Canada. The vendor implements a VMI contract for 
the selected hospitals by integrating the location of the storage facility with 
replenishment policy, and offers direct delivery for hospitals without warehouses.  

The problem statement: Considering the demand uncertainty, the vendor needs to 
decide which hospitals to establish VMI’s warehouses and optimal inventory policy for 
the warehouses to minimize the total expected cost. 



   

 
Figure 1. the supply network with VMI delivery and direct delivery 

 
Model formulation 

The decision variables include: 

𝑌𝑤 : 1 if the warehouse set at hospital i, 0 otherwise. 

𝑌𝑑 : 1 if the direct delivery set at hospital i, 0 otherwise. 

𝑄 : The quantity of product j delivered to hospital i with assigned warehouse. 

𝑆𝑆 : Safety Stock level of product j at the vendor’s warehouse.  

𝑆 : Safety Stock level of product j at the hospital i with assigned warehouse. 

𝑅 : Reorder point level of product j at the hospital i with the assigned warehouse.  

𝑆𝐹 : Safety Stock factor for product j at the hospital i with the assigned warehouse.  

𝑚 : Number of orders delivered to hospital i with the assigned warehouse.  

 An integrated location-inventory optimization problem under stochastic demand 
can be modeled as following. 

𝑀𝑖𝑛 𝐸𝑇𝐶 =

𝐺 𝐷 𝑌𝑑 + ℎ
𝑄
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+ 𝑅 − μ + ℎ  𝑆𝑆 + 𝐹𝐶 𝑌𝑤
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s.t. 𝑌𝑑 + 𝑌𝑤 = 1,      ∀𝑖 = 1, ⋯ , 𝑟 (2) 

𝑄 + 𝑅 − 𝜇  𝑉𝑜 ≤ 𝑌𝑤 𝐹                        ∀ 𝑖 = 1, … , 𝑟                            (3) 

 



𝑄 ≤ 𝑌𝑤 𝑀     ∀ 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑛                                                                 (4) 

 𝑆𝑆 ≥ 𝑚  𝑓(𝑥 ) 𝑋 − 𝑅  𝑑(𝑥 )     ∀ 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑛          (5) 

𝑆𝑆 =  𝑍 𝜎           ∀ 𝑗 = 1, … , 𝑛                                                                                  (6) 

𝜎 =  (𝜎 )  𝑌𝑑               ∀ 𝑗 = 1, … , 𝑛                                                            (7)  

𝑚 ≤ 𝑌𝑤 𝑀                     ∀ 𝑖 = 1, … , 𝑟                                                                         (8) 

 

 𝑄 𝑚 =  𝐷 𝑌𝑤                  ∀ 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑛                                            (9) 

𝑄 , 𝑚 , , 𝑆𝑆 , 𝑅  ≥ 0           ∀ 𝑖 = 1, … , 𝑟 , 𝑗 = 1, … , 𝑛                                         (10) 

      𝑌𝑑 , 𝑌𝑤 ∈ [0,1]         ∀  𝑖 = 1, … , 𝑟                                                                    (11)  

The objective function (1) is to minimize the total annual expected cost, including 
the ordering, holding, transportation, setup and shortage costs. Constraints (2) ensure 
that there is a storage facility or a direct for every hospital. Constraints (3) ensure the 
warehouse space capacity, and constraints (4)-(5) give the upper bound of order 
quantity and the lower bound of safety stock level, correspondingly. Constraints (6) 
calculate the safety inventory, and constraints (7) calculate the standard deviation of 
demand. Constraints (8) ensure the upper bound of the number of orders, and 
constraints (9) calculate the demand quantity. Constraints (10)-(11) give the variable 
domains. 

Then, we will discuss the solution approaches for both uniform and normal demand 
distributions.  

 
   Case 1: The demand follows the uniform distribution of (0, 𝐷 ), where the lower         
limit of the uniform demand distribution is zero and the upper limit is 𝐷 . 
 

With case 1, the first model can be transformed as following. 
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s.t.                    (2)-(4), (6)-(11) 

      𝑆𝑆 ≥  𝑚
𝐷

2
− 𝑅 +

𝑅

2𝐷
    ∀ 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑛                           (13) 

           𝑅 = μ + 𝑆𝐹 𝜎             𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑛                                        (14) 

Where ∫ 𝑥 − 𝑅  𝑓(𝑥 ) 𝑑(𝑥 ) =  − 𝑅 + . 

 



Case 2: The demand is a normally distributed and the lead time is fixed, where 
𝑆𝑆 =  𝑆𝐹 𝜎 , 𝑅 = 𝜇 +  𝑆𝐹 𝜎 . 

 
With case 2, the first model can be transformed as following. 
 

𝑀𝑖𝑛 𝐸𝑇𝐶 =
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s.t.                    (2)-(4), (6)-(11) 

 

 𝑆𝑆 ≥ 𝑚  
𝜎

2
1 + 𝑆𝐹 − 𝑆𝐹          ∀ 𝑖 = 1, … , 𝑟 , 𝑗 = 1, … , 𝑛                       (16) 

 

Results 

To illustrate the practical application of the proposed model, we will conduct 
numerical experiments with the actual data of the vendor, by GAMS 25.1- Baron solver 
software on an Intel(R) Core (TM) i7-4720HQ CPU@ 2.6 GHz with 8 GB RAM. Table 
1 gives the results for different distributions of stochastic demand, showing that the 
uncertainty of the demand directly impacts the location-inventory assignment model. 

 
Table 1. Results for different distributions of stochastic demand 

# Activity  
Normal 

Distribution 
(𝑆𝐹  Base )  

Uniform 
Distribution 
(𝑅  Base)   

Avg. Uniform 
Distribution  
 (𝑅  Base) 

1 Expected Total Cost 1,001,754.52 1,432,916.78 1,643,999.90 

2 Cost Increase  0.00% 30.09% 39.07% 

3 Y   87 74 63 

4 Y   60 73 84 

5 

𝑆𝑆    

60 81 30 

56 74 29 

54 73 27 

6  

𝑆    

329 663 1281 

294 547 1068 

299 587 1151 

7 𝑄   

2268 2142 2072 

1895 1789 1729 

2030 1920 1862 

8 𝑚  156 137 115 



 
Conclusion 
Motivated by the actual vendor problem, this research designs an integrated location-
inventory healthcare supply network under stochastic demand. Considering VMI policy 
and direct delivery policy simultaneously, we proposed a mixed integer nonlinear 
mathematical model, aiming to minimize the expected total cost. To the best of our 
knowledge, our research is the first effort in modeling and integrating VMI and direct 
delivery policies in the healthcare network under stochastic demand environment. 
Subsequently, we discussed the solution approaches for both uniform and normal 
demand distributions. Lastly, we conducted numerical experiments with the real-world 
problem, to further illustrate the practical application of the proposed model. Further 
directions will include solution algorithms for large-scale instances. 
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9  

𝑆𝐹   

1.2167 1.0000 1.0058 

1.3570 1.0000 1.0101 

1.2947 1.0000 1.0081 

10 
𝑅  

  

1787 2068 1961 

1545 1729 1636 

1612 1856 1763 

11 
𝐸𝑆𝐶  

  

54 517 503 

43 431 419 

48 464 451 

12 GAMS Solver BARON BARON BARON 

13 CPU Time used (s) 6.95 9.481 11.2 

14 CPU Time Increase 0.00% 26.70% 37.95% 

15 Absolute gap (optca = 1E-9)  625.4539131 891.7635024 1010.472942 

16 Relative gap (optcr = 0.1) 0.089319324 0.089672233 0.087301377 


