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1 Introduction

With the proliferation of mobile devices and advancements of accurate positioning services, the ride-
hailing service is becoming an indispensable component in mobility systems. Comparing to traditional
public transit, passengers who are taking Uber or Lyft can decide on where to pick up and drop off which
is rather convenient for themselves. It is reported by the New York City Taxi and Limousine Commission
(TLC) that there are approximately 1,000,000 trips every day in the New York. The shape of mobility
systems has been completely changed by the convenient, low-cost, and individual-centered ride-hailing
services by Transportation Network Companies (TNCs). However, many recent studies have pointed out
that the ride-hailing services are contributing to the traffic congestion by exploiting more public resources
than driving and public transits (Castiglione et al. 2016, Li et al. 2016, Castiglione et al. 2018, Agarwal
et al. 2019). For example, the cruising behaviors of vacant ride-hailing vehicles can densify the urban
traffic and hence cause more congestion (Xu et al. 2017). In addition, the traffic can be temporally
disturbed or blocked by the pick-ups and drop-offs of the ride-hailing vehicles, especially on one-lane
roads (Goodchild et al. 2019). What’s more, if the parking spot of passengers’ pick-ups and drop-offs is
on the illegal parking roads, it may lead to some extra traffic accidents, such as the pedestrians hurt by
the sudden opening of the taxi doors. Given the impact of cruising behaviors being intensively studied
in recent years (Xu et al. 2019, Ban et al. 2019), we notice that, to the best of our knowledge, there are
few studies about the impact of ride-hailing pick-ups and drop-offs on traffic congestion and travelers’
behaviors. In view of this, this paper develops a data-driven framework to model the spatio-temporal
congestion impact of the ride-hailing vehicles (RVs) pick-ups and drop-offs.

There are many reasons for the congestion caused by pick-ups and drop-offs of ride-hailing vehicles.
Firstly, passengers usually choose arbitrary pick-ups and drop-offs locations according to their own pref-
erences. This kind of random parking is harmful to unified road management. Secondly, the pick-ups and
drop-offs require the RVs to leave and re-join the traffic stream frequently, which can disturb the traffic
and induce extra delays. Thirdly, the RV pick-ups and drop-offs usually happen on the curb spaces, which
are originally designed for on-street parking, truck loading, temporary stopping of conventional vehicles
(CVs). Due to the limited space on curbside and unexpected high volumes of RV pick-ups and drop-offs,
RVs might spill back to the roads and hence cause congestion. Though the impact of RV pick-ups and
drop-offs depends on road properties and traffic conditions, the empirical studies have suggested that it is
generally negative and significant (Goodchild et al. 2019). Therefore, it is rather essential to explore the
impact of pick-ups and drop-offs on the traffic states. It can effectively alleviate traffic jams and reduce
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traffic accidents. However, there is a lack of frameworks to evaluate the impact caused by RV pick-ups
and drop-offs.

Currently, the management of RV pick-ups and drop-offs largely depends on practical experiences
and heuristics. The RV pick-ups and drop-offs can be viewed as the very-short-term parking, and hence
the curbside management can be considered coherently within the framework of parking management
(Schaller et al. 2011). For example, some airports (e.g. JFK) and hotels have set up RV loading zones, and
some airports (e.g. LAX) directly ban the curbside pick-ups of RVs. However, the analytical evaluation
of different management practices and the optimal management strategies are still lacking due to the lack
of theoretical tools.

To summarize, there is a lack of analytical model to quantify and manage the impact of RV pick-ups
and drop-offs on the traffic. In view of this, this paper develops a data-driven framework to evaluate and
manage the congestion impact of RV pick-ups and drop-offs using the massive traffic speed data and trip
record data. Mathematically, the proposed framework builds a Double Machine Learning (DML) model
to evaluate how much influence the numbers of pick-ups/drop-offs have on traffic states, and a linear
programming is formulated to re-route the RVs to the nearby roads. To demonstrate the effectiveness
of the proposed framework, TLC trip record data and INRIX traffic speed data are used together to
build the DML and optimization models for the New York city. The preliminary experimental results
demonstrate the effectiveness and robustness of the proposed framework.

The remainder of this paper is organized as follows. Section 2 discusses methodology including
scenarios clustering, double machine learning and rerouting the pick-ups and drop-offs. Section 3 takes
Manhattan as the target city and presents results of the proposed framework. Finally, conclusions are
drawn in Section 4.

2 Methodology

In this section, we briefly introduce the learning and managing framework for the RV pick-ups and drop-
offs. The proposed framework consists of three components: scenarios clustering, double machine learning
model, and pick-up/drop-off rerouting.

The traffic states of a transportation network G are modeled by using a spatial random variable that
evolves over time, {F rt ∈ R+, t ∈ T}, where G is the road network under study consisting of regions R,
r is a region in G, r ∈ R, T is the set of the study periods, and F rt is the quantity of measuring traffic
state at the region r and time t.

Scenarios clustering.

It is rather important to identify and cluster different traffic scenarios before we begin to train the DML
model and make rerouting plans. Because the pick-up/drop-offs and congestion patterns are changing
spatio-temporally and are up to the amounts and types of vehicles, the road conditions, surrounding
buildings and so on. There is no difference between the behaviors of pick-ups and drop-offs from the
perspective of transportation because they can both be regarded as short-term parking. But we can’t
recognize all these different kinds of scenarios as the same pattern. Otherwise, the dynamics of traffic
states will be ignored.

The traffic states at different time periods have both randomness and periodicity (Ma & Qian 2018).
This paper aims to identify busy roads and make a plan for rerouting pick-ups and drop-offs so that the
traffic congestion can be alleviated. We firstly use the scenarios clustering over time to tackle the temporal
dynamics. For example, in one week, the traffic states are various between working days and weekends.
Besides, the traffic congestion on Tuesday, Wednesday, Thursday is much heavier than that in other days.
What’s more, the impact of pick-up/drop-offs is unequal during morning and afternoon peaks. Hence we
select the afternoon peaks that last from 16:00 pm to 20:00 pm on Tuesday, Wednesday and Thursday
as our target scene. If we can model the busiest scenarios well, the others can be processed by the same
method. Secondly, in order to learn the relationship between the traffic states and the total number of
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Table 1: Notations of DML
Notations Variables Description

F rt Outcome variable Speed at time t at region r
Dr
t Treatment variable Total number of pick-ups and drop-offs at time t at region r

Xr
t Features Vector of speed at previous time {F rt−1, F

r
t−2, ..., F

r
t−10}

W r
t Control variable Precipitation at time t at region r

θ(Xr
t ) Treatment effect Given Xr

t , how much influence Treatment Dr
t has on Outcome F rt

pick-ups and drop-offs, we divide one city into several districts to capture fine-grained transportation
patterns. In the next section, we will build the estimating model for each scenario separately.

The Double Machine Learning model.

In the second step, we build the DML model to estimate the effect of pick-ups and drop-offs on the
traffic states. It is note that this study attempts to estimate the “treatment effects” of the pick-ups and
drop-offs, instead of the correlations among different variables.

This paper aims to identify whether the number of pick-ups and drop-offs is one major reason con-
tributing to the traffic congestion or not. Compared to previous casual inference models, DML not only
focuses on modeling non-linear relationship between different variables but also overcomes regularization
biases based on arbitrary machine learning methods, including random forests, lasso, ridge, deep neural
nets, boosted trees, and various hybrids and ensembles of these methods (Chernozhukov et al. 2018). It
is an effective method to capture the casual relationship between the numbers of the pick-up/drop-offs
and traffic states.

We will introduce how the DML model achieves unbiased estimation and how this model is used in
our research. There are notations used in this model shown as Table 1. In this paper, precipitation W r

t

is considered as control variable because we should explore such casual inference under the same weather
condition. Besides, previous speed data is taken as features Xr

t . The target is to estimate θ(Xr
t ) without

any bias. If we can achieve this goal, the casual inference between the F rt and Dr
t can be captured so

that we can make rerouting plans to solve traffic jams.
Firstly, we discuss DML model from partially linear regression as Equation 1 and Equation 2.

F rt = θ(Xr
t ) ·Dr

t + g(Xr
t ,W

r
t ) + Urt , E[Urt |Xr

t ,W
r
t ] = 0 (1)

Dr
t = f(Xr

t ,W
r
t ) + V rt , E[V rt |Xr

t ,W
r
t ] = 0 (2)

Where g(Xr
t ,W

r
t ) and f(Xr

t ,W
r
t ) trained by using two machine learning approaches are functions of

Xr
t and W r

t . Urt and V rt are random noises. And θ is the parameter which indicates the treatment effect.
Given certain features Xr

t and controls W r
t , it can interpret how much influence the total numbers of

pick-ups and drop-offs have on the traffic states.
In order to estimate θ(Xr

t ), the Equation 1 can be written as Equation 3.

F rt − E[F rt |Xr
t ,W

r
t ] = θ(Xr

t ) · (Dr
t − E[Dr

t |Xr
t ,W

r
t ]) + Urt (3)

Then, we train the first stage model shown in Equation 4 and the second stage model as in Equation5
to represent two expectations in above Equation 3 respectively. We will train these two models by using
Random Forest, Gradient Tree Boosting, Support Vector Machines and so on and select two models that
perform best among these(Research 2019).

q(Xr
t ,W

r
t ) = E[F rt |Xr

t ,W
r
t ] (4)

f(Xr
t ,W

r
t ) = E[Dr

t |Xr
t ,W

r
t ] (5)

Next, Equation 3 can be represented by residuals of real value and predicted value shown as Equation 6.
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F rt − q(Xr
t ,W

r
t ) = θ(Xr

t ) · (Dr
t − f(Xr

t ,W
r
t )) + Urt (6)

We can obtain θ̂(Xr
t ) shown as Equation 7, the estimation value of θ(Xr

t ), by training the final stage
model based on linear regression, such as Lasso.

θ̂(Xr
t ) = arg min

θ∈Θ
E[(F rt − q(Xr

t ,W
r
t ))− θ(Xr

t ) · (Dr
t − f(Xr

t ,W
r
t ))] (7)

Finally, we can obtain the predicted value F̃ rt of F rt as written in Equation 8.

F̃ rt = θ̂(Xr
t ) · (Dr

t − f(Xr
t ,W

r
t )) + q(Xr

t ,W
r
t ) + Urt (8)

Rerouting the pick-ups and drop-offs.

Once the impact of the pick-up/drop-offs on the congestion has been learned by the DML model, the
average treatment effects of pick-up/drop-offs to the congestion can be extracted from this model. For
each time interval t, the solution of rerouting is presented in Equation 9.

min
p̃rt ,d̃

r
t ,∆

p
t (r,r′),∆d

t (r,r′)

∑
r∈R

cr(F̃
r
t )−

∑
r,r′

cp(r, r′)∆p
t (r, r

′)−
∑
r,r′

cd(r, r′)∆d
t (r, r

′)

s.t. θ̂(Xr
t ) · (Dr

t − f(Xr
t ,W

r
t )) + q(Xr

t ,W
r
t ) + Urt = F̃ rt ∀r

prt −
∑
r′∈N (r) ∆p

t (r, r
′) = p̃rt ∀r

drt −
∑
r′∈N (r) ∆d

t (r, r
′) = d̃rt ∀r

pr
′

t +
∑
r∈N (r′) ∆p

t (r, r
′) = p̃r

′

t ∀r′

dr
′

t +
∑
r∈N (r′) ∆d

t (r, r
′) = d̃r

′

t ∀r′
0 ≤ ∆p

t (r, r
′) ≤ ε ∀r, r′

0 ≤ ∆d
t (r, r

′) ≤ ε ∀r, r′

(9)

where p̃t,d̃t are the numbers of pick-up/drop-offs after the re-routing, cr(·) converts the traffic states to
costs, cp(r, r′) and cd(r, r′) are the unit costs of the rerouting from region r to region r′, ∆p

t (r, r
′) and

∆d
t (r, r

′) are the number of vehicles for pick-up/drop-offs to be rerouted from region r to region r′, N (r)
is the neighbors of r, and ε is the maximum number of vehicles to be rerouted. Formulation 9 is a linear
programming, hence it can be solved efficiently for large-scale networks.

The objective of Formulation 9 is to minimize the cost of rerouting. This cost contains two parts:
(1) some pick-ups and drop-offs that originally happen in region r will be reassigned into this region’s
neighbor r′. After rerouting, we qualify the effect of rerouting as the cost of current speed state, cr(F̃

r
t ).

(2) Some additional cost
∑
r,r′

cp(r, r′)∆p
t (r, r

′) and
∑
r,r′

cd(r, r′)∆d
t (r, r

′) will take when some drivers are

directed into their neighboring area.

3 Results

To examine the effectiveness of the proposed framework, we use the New York Taxi and Limousine
Commission (TLC) trip record data and INRIX traffic speed data to build the proposed model for
Manhattan in the New York city. Both the speed data and trip record data are from February 1, 2019 to
January 31, 2020. In our experiment, the traffic speed is used to represent the traffic states because it can
reflect whether the current road is blocked or not to some extent. And the trip record data contains the
pick-up/drop-offs information including the date, the taxi types, current region and so on in Manhattan.
The preliminary statistics result is shown in the Figure 1. As we can see, in different regions r, there are
varied numbers of pick-ups and drop-offs. Especially for some center regions, the value of pick-ups and
drop-offs are much bigger than that in other regions.
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Figure 1: Overview of the distribution of pick-ups and drop-offs in Manhattan district.

The experiments are still on-going, while the preliminary results show that the pick-up/drop-offs have
statistically significant impact on the traffic congestion, and the efficiency of the proposed re-routing
method is satisfactory.

4 Conclusion

This paper develops a holistic data-driven framework to learn and manage the curbside pick-ups and
drop-offs in order to reduce their negative impact to traffic congestion. The New York TLC trip record
data and INRIX data are used to examine the proposed framework, and the preliminary results are
compelling and satisfactory. The contributions of this paper are summarized as follows:

• It develops a novel data-driven framework to learn the spatio-temporal impact of RV pick-up/drop-
offs on the traffic congestion.

• It builds a data-driven framework to re-route the pick-up/drop-offs in order to minimize the con-
gestion induced by the pick-up/drop-offs.

• It examine the proposed framework with real-world data on large-scale networks.
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