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1. Introduction 

Traffic flows on urban roads are regularly interrupted by traffic signals at intersections. As such, 

vehicles experience frequent stop-and-go movement and consume more fuel. Emerging connected & 

automated vehicle (CAV) technologies enable vehicles to receive the Signal Phase and Time (SPaT) 

information from the intersection and smooth their trajectories accordingly. However, trajectory 

optimization in mixed traffic is quite challenging due to uncertain human driver behaviors.  

This study proposes a new vehicle trajectory optimization model to control a CAV in mixed traffic 

near a signalized intersection. The proposed model leverages learning methods and behavior models to 

predict downstream human-driven vehicles (HV) with SPaT and limited downstream traffic information. 

Based on the predicted information, a fast optimization algorithm is proposed to control the CAV to pass 

the intersection with a smooth trajectory while preserving the intersection throughput rate. The optimized 

CAV trajectory will consequently smooth the trajectories of following HVs in the mixed traffic. Finally, 

the key model development is validated with field experiments.  

Our main contributions are as follows: 

1) Propose a learning-based model to optimize CAV trajectories in mixed traffic at a signalized 

intersection. 

2) Compare the performance of the two arrival time prediction methods (i.e., look-up table, and 

learning-based arrival time prediction). 

3) Design and conduct field experiments to validate the proposed trajectory optimization model. 

2. Methodology 

The notations in Table 1 are used throughout this paper. 

Table 1 Nation list. 

Symbol Description 

𝑚 
Vehicle’s driving mode. 𝑚 ∈ ℳ:= {C, H}. C means the vehicle is 

running as CAV, H means the vehicle is running as HV 

𝒯 Time duration of the model 

𝒩 Set of all vehicles 

𝑛 Vehicle number. 𝑛 ∈ 𝒩 
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𝑡 Time instant. 𝑡 ∈ 𝒯 

𝑥𝑛
𝑚(𝑡) 

Location of vehicle 𝑛 at time 𝑡, the coordinate is the distance from the 

stop line 

𝑣𝑛
𝑚(𝑡) Speed of vehicle 𝑛 at time 𝑡 

𝑎𝑛
𝑚(𝑡) Acceleration of vehicle 𝑛 at time 𝑡 

𝑢𝑛
𝑚(𝑡) Jerk of vehicle 𝑛 

𝐿AB Distance between loop detector A and B 

𝐵𝑛 Mass of vehicle 𝑛 

𝑡𝑛
𝑚A Time instant when vehicle 𝑛 passes the loop detector A 

𝑡𝑛
𝑚B Time instant when vehicle 𝑛 passes the loop detector B 

𝐗𝑛
𝑚(𝑡) System state 

�̇�𝑛
𝑚(𝑡) System dynamic function 

𝒥 Total cost in the cost function 

𝑅(𝑣𝑛
𝑚(𝑡), 𝑎𝑛

𝑚(𝑡), 𝑢𝑛
𝑚(𝑡)) Running cost 

𝑆(𝐗𝑛(𝑡𝑛
𝑚B)) Terminal cost 

𝐹𝑛
𝑚(𝑡) Instant fuel consumption of vehicle 𝑛 

�̂�𝑛
B The desired position of vehicle 𝑛 passing loop detector B (stop line) 

�̂�𝑛
B The desired speed of vehicle 𝑛 passing loop detector B (stop line) 

�̂�𝑛
B 

The desired acceleration of vehicle 𝑛 passing loop detector B (stop 

line) 

𝑣LIM Legal speed limit of the road 

𝑣MIN Minimum speed 

𝑎MAX Maximum acceleration 

𝑎MIN Minimum acceleration 

𝑢MAX Maximum jerk 

𝑢MIN Minimum jerk 

𝐾1, 𝐾2, 𝐾3 Parameters of the terminal cost 

𝐾4, 𝐾5, 𝐾6, 𝐾7, 𝐾8, 𝐾9, 𝐾10 Parameters of the running cost 

𝐾11, 𝐾12 Parameters of the linear car-following model 

𝑡𝑛
MIN 

Earliest time of vehicle 𝑛 passing the stop line without considering its 

preceding vehicle and signal control 

𝑡𝑛
D Candidate travel time of vehicle 𝑛 

𝑡H Pre-set headway of two consecutive vehicles at the stop line 

𝑡𝑛
G The start time of green light which is closest to 𝑡𝑛

D 

T𝑘
G The start time of green light in cycle 𝑘 

T𝑘
R The start rime of red light in cycle 𝑘 

PR Duration of red phase 

PG Duration of green phase 

𝑎𝑛
ACC 

Target acceleration of vehicle 𝑛 calculated from linear car-following 

model 

𝜏𝑛
𝑚 Desired time gap of vehicle 𝑛 

2.1. Arrival time prediction 

As CAV may not be the leading vehicle in the platoon, it is difficult to get accurate arrival time by 
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mathematical model. As a result, look-up table is applied to predict the arrival time of the CAV. HVs are 

used to drive from loop detector A to detector B at different speed limit, and different SPaT information. 

After collecting and analyzing these data, a look-up table can be built. Four factors are considered in the 

look-up table, distance 𝑥𝑛
H(𝑡), real-time speed 𝑣𝑛

𝑚(𝑡), real-time headway ℎ𝑚(𝑡), and SPaT information. 

After processing the accumulated data, the look-up table is able to predict the arrive time of CAV in real 

time.  

𝑡𝑛
MIN = 𝑡𝑛

𝑚A +
𝐿AB−(

𝑣LIM
2
−𝑣𝑛

𝑚(𝑡𝑛
𝑚A)

2

2𝑎MAX )

𝑣LIM
+

𝑣LIM−𝑣𝑛
𝑚(𝑡𝑛

𝑚A)

𝑎MAX           (1) 

𝑡𝑛
D = max{𝑡𝑛

MIN, 𝑡𝑛−1
𝑚B + 𝑡H}              (2) 

𝑡𝑛
G = {

T𝑘
G 𝑡𝑛

D ∈ [T𝑘
G, T𝑘

R)

T𝑘+1
G 𝑡𝑛

D ∈ [T𝑘
R, T𝑘+1

G )
              (3) 

𝑡𝑛
𝑚B = max{𝑡𝑛

G, 𝑡𝑛
D}                (4) 

As to the learning-based arrival time prediction method, five factors, including distance 𝑥𝑛
H(𝑡), 

real-time speed 𝑣𝑛
𝑚(𝑡), real-time headway ℎ𝑚(𝑡), SPaT information, and the real arrival time are sent 

into the convolutional neural network (CNN) for training. The training results are employed for real-time 

arrival time prediction during the trajectory optimization experiments. 

2.2. Car-following model 

The linearized car-following model is applied to model the HVs’ driving behavior (Milanés et al. 

2014). 

𝑎𝑛
ACC(𝑡) = 𝐾11(𝑥𝑛−1

𝑚 (𝑡) − 𝑥𝑛
𝑚(𝑡) − 𝑣𝑛

𝑚(𝑡)𝜏𝑛
𝑚) + 𝐾12(𝑣𝑛−1

𝑚 (𝑡) − 𝑣𝑛
𝑚(𝑡))      (5) 

2.3 Model predictive control 

2.3.1. State variables 

For an individual CAV indexed by 𝑛, the system state vector 𝐗𝑛
𝑚(𝑡) can be defined as follows: 

𝐗𝑛
𝑚(𝑡) = [𝑥𝑛

𝑚(𝑡), 𝑣𝑛
𝑚(𝑡), 𝑎𝑛

𝑚(𝑡)]𝑇             (6) 

The state dynamics is shown as follows: 

�̇�𝑛
𝑚(𝑡) = 𝑓(𝑥𝑛

𝑚(𝑡), 𝑣𝑛
𝑚(𝑡), 𝑎𝑛

𝑚(𝑡)) = [𝑣𝑛
𝑚(𝑡), 𝑎𝑛

𝑚(𝑡), 𝑢𝑛
𝑚(𝑡)]𝑇        (7) 

Where 𝒂𝑛
𝒎(𝑡) = 𝑎𝑛

𝑚(𝑡) denotes the control input, which in this case is the acceleration of the vehicle 

𝑛. 

2.3.2. Objective function 

The control goal is to drive AVs from the current position to the stop line with the desired velocity 

and acceleration. 

𝒥𝑎𝑛
𝑚(𝑡)
𝑚𝑖𝑛 = 𝑆(𝐗𝑛

𝑚(𝑡𝑛
𝑚B)) + ∫ 𝑅(𝑣𝑛

𝑚(𝑡), 𝑎𝑛
𝑚(𝑡), 𝑢𝑛

𝑚(𝑡))𝑑𝑡
𝑡𝑛
𝑚B

𝑡𝑛
𝑚A         (8) 

Terminal cost: 

𝑆(𝐗𝑛
𝑚(𝑡𝑛

𝑚B)) = 𝐾1(𝑥𝑛
𝑚(𝑡𝑛

𝑚B) − �̂�𝑛
B)

2
+ 𝐾2(𝑣𝑛

𝑚(𝑡𝑛
𝑚B) − �̂�𝑛

B)
2
+ 𝐾3(𝑎𝑛

𝑚(𝑡𝑛
𝑚B) − �̂�𝑛

B)
2
   (9) 
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�̂�𝑛
B = 𝐿AB                 (10) 

�̂�𝑛
B = 𝑣LIM                 (11) 

�̂�𝑛
B = 0                  (12) 

Running cost: 

𝑅(𝑣𝑛
𝑚(𝑡), 𝑎𝑛

𝑚(𝑡), 𝑢𝑛
𝑚(𝑡)) = 𝐾4 + 𝐾5𝑃

𝑇(𝑣𝑛
𝑚(𝑡), 𝑎𝑛

𝑚(𝑡)) + 𝐾6𝐵𝑛𝑣𝑛
𝑚(𝑡)𝑎𝑛

𝑚(𝑡)2𝐻(𝑎𝑛
𝑚(𝑡)) + 𝐾7𝑢𝑛

𝑚(𝑡)2

                   (13) 

𝑃𝑇(𝑣𝑛
𝑚(𝑡), 𝑎𝑛

𝑚(𝑡)) = max{0, 𝐾8𝑣𝑛
𝑚(𝑡) + 𝐾9𝑣𝑛

𝑚(𝑡)2 + 𝐾10𝑣𝑛
𝑚(𝑡)3 + 𝐵𝑛𝑣𝑛

𝑚(𝑡)𝑎𝑛
𝑚(𝑡)}   (14) 

𝐻(𝑎𝑛
𝑚(𝑡)) = {

1 𝑎𝑛
𝑚(𝑡) > 0

0 𝑎𝑛
𝑚(𝑡) ≤ 0

              (15) 

2.3.3. Constraints 

Speed constraints: 𝑣MIN ≤ 𝑣𝑛
𝑚(𝑡) ≤ 𝑣LIM           (15)  

Acceleration constraints: 𝑎MIN ≤ 𝑎𝑛
𝑚(𝑡) ≤ 𝑎MAX          (16)  

Jerk constraints: 𝑢MIN ≤ 𝑢𝑛
𝑚(𝑡) ≤ 𝑢MAX            (17)  

Safety constraints: 𝑎𝑛
𝑚(𝑡) ≤ 𝑎𝑛

ACC(𝑡)            (18)  

3. Field experiments 

We conduct experiments on an approximate 400-meter straight road segment (Fig. 1). The loop 

detector is able to provide speed and time instant information when vehicle passes. Loop detector B is 

adjacent to the stop line and traffic light. The test track is furnished with DSRC RSU. All vehicles 

equipped with DSRC OBU running in the test track can receive SPaT information in real time. There are 

one CAV and four HVs used in the experiments.  

 

Fig. 1 Satellite picture of the test track. 

4. Results 

4.1 Arrival time prediction 

Arrival time prediction results of two methods are listed in Fig. 2. As can be seen in Fig. 2, the red 

lines and black lines correspond to the predicted arrival time based on the look-up table and learning-

based methods, respectively. The learning-based arrival time prediction method achieves a smaller 

prediction error when the amount of human-driven vehicles before the CAV is less than four, 𝑛 < 4. On 

the contrary, the look-up table arrival time prediction method is able to get a more stable prediction value; 

namely, the data vibration amplitude is very small. 
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(a) n=1                                 (b) n=2 

 

(c) n=3                                 (d) n=4 

Fig. 2 Arrival time prediction results. 

4.2 Trajectory optimization 

 

Fig. 3 Vehicle trajectories in the experiments (n=2). 

One representative field experiment result is shown in Fig. 2. The read line is the trajectory of the 

CAV, and the blue lines are trajectories of the HVs. In this case, there are two HVs in front of the CAV 

in the platoon, there two HVs drive at a higher speed and come to a complete stop at the signalized 

intersection, the CAV and following HVs pass the intersection at the green phase without stop, and the 
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speed trajectories and fuel consumption are all optimized. 

5. Conclusion 

Providing signal information to the vehicles on signalized urban roads is demonstrated to be an 

effective way to reduce the idle time and the fuel consumption. In this paper, a distributed and cooperative 

eco-driving method has been proposed for platoons to address these issues. The proposed eco-driving 

method has been designed for mixed traffic flow on an urban road, which consists of HVs and various 

penetrations of CAVs. The CAVs attempt to pass the intersection on the earliest possible green time with 

a maximum desired speed and zero acceleration. 
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