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1 Introduction

The rapid growth of transportation network companies (TNCs) have reshaped the ride-hail in-
dustry in the past decade. Taking advantage of mobile technologies, the e-hail service offered
by TNCs has quickly gained popularity, rivaling conventional taxis around the world. E-hail is
celebrated for improving passengers’ travel experiences in the low-density areas that have been
poorly covered by traditional taxi services. Yet, properly serving these areas requires recognizing
the system as an interlinked network of local markets with varying supply-demand conditions.
Clearly, drivers prefer to cruise in a local market with a greater probability of meeting a pas-
senger and a higher average trip fare. While the latter is determined by demand and pricing,
the former is sensitive to the collective search behaviors of idle drivers. The distribution of idle
drivers in the network, in turn, affects the system performance (e.g., the passenger wait time in
each local market). Therefore, the platform needs to develop its operational strategies, such as
pricing, by anticipating drivers’ movements across local markets. In this paper, we develop a
spatiotemporal equilibrium model of a ride-hail market defined on a network of local markets.
The model considers a e-hail platform or a taxi operator monopolize the market, and takes its
pricing and matching strategies as given. The goal is to predict the distribution and movements
of idle drivers in the network, assuming each driver makes his relocation decision to maximize
his own expected return. Although not considered in this paper, the proposed model lays a
foundation for evaluating and designing the platform’s operational strategies that may vary over
space and time (e.g., surge pricing).

Extensive research efforts have been devoted to modeling spatial equilibrium in a ride-hail
market. Studies in the literature may be broadly classified as decentralized (e.g., Yang and Wong,
1998; Lagos, 2000) and centralized models (e.g., Zhang and Pavone, 2016; Braverman et al., 2019),
according to whether or not drivers are allowed to relocate at their own discretion. In the de-
centralized models, a driver is assumed to choose his next search location based on the expected

∗Corresponding author, E-mail: y-nie@northwestern.edu; Phone: 1-847-467-0502.

1



return of each local market. The search strategy may be treated as deterministic (e.g., Lagos,
2000; Bimpikis et al., 2019) or stochastic (e.g., Yang and Wong, 1998; Yang et al., 2010). This study
develops a decentralized model with a deterministic search strategy.

The passenger-driver matching process in a local market has also been modeled differently
in existing studies. A common approach is to form a virtual queue of idle drivers, similar to a
taxi stand (Zhang and Pavone, 2016; Banerjee et al., 2017; Braverman et al., 2019). Each arriving
passenger is instantly picked up by the first idle driver, or leaves the system right away if the idle
driver queue is empty. Hence, the detailed matching and pickup processes are not considered
in these queuing network models. Another stream of studies ignores the matching friction,
assuming the pickup number simply equals the minimum between the number passengers and
the number of idle drivers (Lagos, 2000; Bimpikis et al., 2019). On the other hand, Yang et al.
(2010) introduce an aggregate matching function to characterize the relationship between pickup
rate and the number of waiting passengers and idle drivers. In this paper, the matching process
is described by a new mechanism proposed in Chen et al. (2019) and empirically validated in
Zhang et al. (2019). Specifically, this mechanism is applied to derived the likelihood of finding a
passenger in a local market within a certain time period.

In the context of spatial equilibrium, most studies have focused on the steady state, leaving
out the dynamic evolution of passenger demand and driver supply. Guda and Subramanian
(2018) is a notable exception, which investigates the impact of surge pricing using a highly
stylized model (i.e., two adjacent zones over two successive time periods). This paper addresses
this gap by considering a more general network topology over multiple discrete time periods and
derive the equilibrium distribution and flow pattern of idle drivers in the entire analysis horizon.

At the core of the proposed equilibrium model is a Markov decision process (MDP) used by
each driver to optimize his search strategy. Unlike previous studies using a similar modeling
framework (e.g., Yu et al., 2019; Shou et al., 2020), we assume every driver optimize his search
strategy while anticipating the strategies of others. The model is thus a variant of MDP conges-
tion game (Calderone and Sastry, 2017; Calderone and Shankar, 2017). Compared to Calderone
and Sastry (2017) and Li et al. (2019), our model characterizes the “congestion” effect differently.
In a local ride-hail market, congestion arises as idle drivers compete for passengers, thus it is
captured by the probability of meeting a passenger, referred to as meeting probability. Among
other things, this probability depends on the densities of idle drivers and waiting passengers as
well as the underlying matching mechanism. As mentioned above, we will apply the mechanism
developed in our previous studies to specify the meeting probability for both taxi and e-hail
services.

To summarize the methodological contribution of this study,

• we develop a general spatiotemporal equilibrium model that captures the profit-driven
search behaviors across a network of connected local ride-hail markets.

• we incorporate a physical matching mechanism in the equilibrium model and apply it to
both taxi and e-hail services to characterize the network congestion effect in each local
market created by the competition among idle drivers.

• we model the driver’s search behaviors as an MDP and show that it leads to a congestion
game analogous to the traffic assignment problem.
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The next section presents the main methodology of this paper. Section 2.1 describes the
dynamic spatial equilibrium as an MDP congestion game. Section 2.2 explains how the meeting
probability is specified using a spatial matching theory. Section 2.3 outlines an solution algorithm
for the equilibrium problem.

2 Methodology

2.1 Dynamic spatial equilibrium as an MDP routing game

Consider a ride-hail market divided into N zones (local markets) and an analysis horizon con-
sisting of H discrete time periods of identical length ∆. The travel times between zone i and zone
j, denoted as τij, is assumed to be multiples of ∆ and τii = 0, ∀i. Let qi,t be the demand rate
originated from zone i during time period t, and αij be the fraction of demand from i destined
for j (∑j αij = 1). A fleet of M drivers travel across different zones of the market to search and
deliver passengers. We use yi,t to denote the number of idle drivers in zone i at the beginning of
time period t.

Matching is modeled as a process where idle drivers in each zone are assigned to passengers
originating from the same zone. It starts at the beginning of each period, taking the passenger
demand rate and the number idle drivers as inputs, and yields the matched and unmatched
drivers at the end of period according to certain matching mechanism. The meeting probability
during period t in zone i, denoted as mi,t, is thus a function of qi,t and yi,t defined for a given type
of ride-hail service, which will be specified in Section 2.2. At the end of period t, mi,tyi,t drivers
are successfully matched and ready to deliver passengers to their destinations. The others will
decide their next search destination that maximizes their expected return. Therefore, the driver
supply yi,t during period t includes those who were in zone i at the end of period t − 1 (either
drop off passengers or fail to meet passengers) and decide to search locally, and those who just
arrive at zone i at t for passenger search. Let xij,t denotes the relocation flow from i to j at t.
Hence, yi,t can be written as

yi,t = ∑
j

xji,t−τji . (1)

A driver’s movements across zones over the analysis horizon is formulated as a Markov
decision process (MDP) represented by a tuple (S ,A, T, R, β). The components are specified as
follows:

• S is a set of states and each state s = (i, t) is represented by the driver’s location i at t
before he makes the relocation decision.

• A is a set of actions and each action a is defined as the next search zone.

• T denotes a state transition probability function that is jointly determined by the meeting
probability and the demand pattern:

T(s′ = (k, t + τij)|s = (i, t), a = j) =

{
mj,t+τij αjk j ̸= k
1 − mj,t+τij j = k

; (2)
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• R is a reward function of the current state, action and the following state, which is simply
the discounted revenue if the driver is matched and zero otherwise:

R(s = (i, t), a = j, s′ = (k, t + τij)) =

{
βτij pjk j ̸= k
0 j = k

; (3)

• β is a discount factor β ∈ (0, 1] that accounts for the preference for the present gain over
the future gain.

Therefore, the maximum expected return for a driver in state s is characterized by the Bell-
man’s optimality equation:

V(s) = max
a∈A

[
′

∑
s

T(s′|s, a)(R(s, a, s′) + βτjk+1V(s′))

]
. (4)

We note that Eq.(4) is derived based on the assumption that all drivers accept their assigned
rides. It is straightforward to consider the case where drivers are allowed to reject requests, as
recently implemented by Uber in California (Zipper, 2019). Also, the trip fair pij is differentiated
by trip origin and destination, but kept constant over time. Again, it is easy to have it vary over
time.

In this system, every driver makes decision based on the value function Eq.(4). Their collective
behaviors lead to the relocation flow x = {xij,t} and the distribution of idle drivers y = {yi,t},
which, in turn, affects the meeting probability mi,t in Eq. (2) and consequently the value function.
In other words, both the transition probability and the value function (Eq. (4)) are functions of x.
If all drivers have perfect information and consistently following the decision process described
above, the system will eventually evolves to a state similar to the Wardrop equilibrium that has
been widely applied in urban travel forecasting (Wardrop, 1952; Beckmann et al., 1956). At such
a state, no individual driver could benefit from unilaterally changing his search strategy in any
zone at any time. Finding this equilibrium belongs to a broad class of problems known as MDP
congestion game (Calderone and Sastry, 2017; Calderone and Shankar, 2017).

Let Q(s, a, x) be the expected return for a driver in state s taking action a given the strategies
of others. Hence,

Q(s, a, x) = ∑
s

T(s′|s, a, x)(R(s, a, s′) + βd(s, a, s′)V(s′, x)). (5)

Mathematically, a flow pattern of idle drivers x∗ is said to be a Wardrop equilibrium if for any
zone i at time t such that x∗ij,t > 0,

Q((i, t), j, x∗) ≥ Q((i, t), k, x∗), ∀k. (6)

2.2 Specification of meeting probability

Under mild assumptions, Chen et al. (2019) and Zhang et al. (2019) derive the waiting time
distribution for street-hail and e-hail passengers. For passengers in zone i at time t, it is given by

Taxi: Fs
i,t(u) = 1 − exp

(
−σi,tdi,tvi,tΛi,t

δ
u
)

, (7)

E-hail: Fe
i,t(u) = 1 − exp

(
−

πki,tv2
i,tΛi,t

δ2Πi,t
u2

)
, (8)
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where δ is the detour factor of road network, vi,t is the average cruising speed, Λi,t is the va-
cant vehicle density (including idle and matched drivers), σi,t reflects the attractiveness of certain
location towards nearby idle drivers (or a concentration level of demand), di,t denotes the maxi-
mum hail radius in street-hail, Πi,t refers to the waiting passenger density, and ki,t measures the
efficiency of matching algorithm in e-hail.

By symmetry, we could obtain the distribution of driver’s search time, which reads

Taxi: Gs
i,t(u) = 1 − exp

(
−σi,tdi,tvi,tΠi,t

δ
u
)

, (9)

E-hail: Ge
i,t(u) = 1 − exp

(
−

πki,tv2
i,tΠi,t

δ2Λi,t
u2

)
. (10)

Therefore, the probability of meeting a passenger in zone i during period t is given by mi,t =

Gz
i,t(∆), z ∈ {s, e}. Suppose all zones have the same size A = 1, then the vacant vehicle density

can be substituted by the number of idle drivers at the beginning of period t, i.e., Λi,t = yi,t/A =

yi,t. As per Little’s formula (Little, 1961), waiting passenger density may be approximated by
Πi,t = qi,tw̄i,t/A = qi,tw̄i,t, where w̄i,t is the average passenger waiting time with close forms
(Chen et al., 2019; Zhang et al., 2019):

Taxi: w̄s
i,t =

δ

σi,tdi,tvi,tΛi,t
, (11)

E-hail: w̄e
i,t =

δ

2vi,t

√
Πi,t

kΛi,t
. (12)

With some algebra, we finally derive the meeting probabilities as follows:

Taxi: ms
i,t = 1 − exp

(
− qi,t

yi,t
∆
)

, (13)

E-hail: me
i,t = 1 − exp

(
−π

4
q2

i,t

y2
i,t

∆2

)
. (14)

2.3 Solution algorithm

Conventional solution methods of MDP (e.g., backward induction) cannot be applied to solve
the proposed model because the system dynamics characterized by the meeting probabilities
change as drivers alter their search strategies. However, we notice that drivers’ movements in
the ride-hail market is analogous to those in a traffic network. Selfish travelers seek the fastest
path to their destinations, while the accumulative flow creates congestions. Similarly, drivers
relocate to areas that yield the maximum expected return, though the increase in supply drags
down the meeting probability. Therefore, we apply the method of successive average (MSA) to
solve the equilibrium, which has been widely applied to solve the stochastic user equilibrium
(SUE) (e.g., Sheffi and Powell, 1982; Powell et al., 1995). In each iteration, we first update the
value function using current relocation flows x. Similar to all-or-nothing assignment, we solve
the optimal policy and derive a moving direction of x. We update x in the sense of successive
average until the convergence criterion is achieved.
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