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1.  Introduction 

Shared mobility comes in many forms. Notable examples include carsharing services 

and ride-sourcing services (with dedicated drivers) services (Hartmans and Leskin, 2019; Jin 

et al., 2018; Loose, 2010; Shaheen and Cohen, 2019; Shaheen et al., 2018). Distinctive as they 

are from one another today, these shared mobility business models are expected to be 

consolidated into two major types of door-to-door mobility service in the foreseeable future 

due to the advent of autonomous vehicle technology, i.e., shared-and-autonomous-mobility 

service without pooling option (SAMw/oP) and the shared-and-autonomous-mobility service 

with pooling option (SAMw/P) (Stocker and Shaheen, 2017). This study aims to address a 

tactical fleet sizing problem in SAMw/P services by maximizing the profit of a service operator 

while taking the ride matching and vehicle dispatching (i.e., vehicle assignment and vehicle 

repositioning) into consideration. There has been research on SAM services, from system 

modeling and simulation to the fleet management and operational problems (Chen et al., 2016; 

Chen et al., 2020; Dandl et al., 2019; Fagnant and Kockelman, 2014; Fagnant et al., 2015; 

Hyland and Mahmassani, 2017; Vazifeh et al., 2018; Zhang et al., 2015; Zhao and 

Malikopoulos, 2019). The earliest studies considered the operation mode of traditional 

carsharing and ride-sourcing services without shared rides (Zhao and Malikopoulos, 2019). 

Recently, there have been some attempts to explore the option of carpooling in SAM services, 

i.e., the SAMw/oP services (Fagnant and Kockelman, 2018; Farhan and Chen, 2018; 

Gurumurthy et al., 2019; Hyland and Mahmassani, 2018; Ke et al., 2020; Levin et al., 2017). 

Nevertheless, most of these studies focused on impact analysis and simulation models with 
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simple rule-based procedures or heuristic methods to pair rides and dispatch vehicles. To the 

best of our knowledge, no studies have ever considered the ride-matching problem, especially 

the joint optimization of ride matching and vehicle dispatching (RM&VD) for SAMFS 

problem using an exact optimization approach. 

In this study, we consider a SAM service provider who dispatches a fleet of 

homogeneous shared autonomous vehicles (SAVs) to serve spatio-temporal customer ride 

requests within a service area. Each ride is characterized by its origin and destination, and a 

time window defined by the earliest departure time and the latest arrival time. We consider the 

most common carpooling scenario in the current ride-splitting services (e.g., UberPOOL and 

Didi Express Pool), i.e., “two riders-single vehicle”. The way two riders are paired corresponds 

to a ride-matching pattern for the two riders. A ride-matching pattern is deemed feasible if it 

produces a positive cost saving in terms of driving distance while respecting the time window 

of each rider. The vehicle dispatching considered in this study includes vehicle assignment and 

vehicle repositioning. Given a limited fleet size, our objective is to maximize the daily profit 

of service providers by determining the optimal fleet size while considering the ride matching 

and vehicle dispatching strategy for the SAV fleet.  

2. Methodology 

We define the activity trajectories of vehicle as columns and formulate the SAMFS 

problem as a set partitioning model with side constraints. The huge number of feasible activity 

trajectories, however, makes the model intractable even for a small size problem. Luckily, the 

optimal solution could be found by a well-designed branch-and-cut-and-price (BCP) approach, 

a leading exact algorithm for solving many classes of VRP (Barnhart et al., 1998; Costa et al., 

2019; Desaulniers et al., 2006; Feillet, 2010; Lübbecke and Desrosiers, 2005). When 

implementing the BCP method, the linear programming relaxation of the set partitioning model, 

referred to as master problem, is solved through a column generation method by repeatedly 

solving a restricted master problem with a subset of columns, and a pricing problem to find 

additional columns with positive reduced cost. The pricing problem embedded in the BCP 

approach to determine the RM&VD strategy of a vehicle is a variant of NP-hard elementary 

shortest path problem with resource constraint. To address the pricing problem, an effective 

two-phase method is developed to generate columns. Three speedup techniques are used to 

accelerate the algorithm. Valid inequalities are added to further strengthen the model and 

improve the upper bound. If the column generation method for solving the pricing problem 
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produces a non-integer optimal solution, a branch-and-bound method is used to repeatedly 

solve the pricing problem until an integer solution is found. The proposed B&P approach can 

yield the optimal fleet size for SAMw/P services. 

3. Results 

Random instances are generated to evaluate the overall performance of the proposed 

BCP method and the effectiveness of the valid inequalities in obtaining the optimal integer 

solution in these instances. The results are shown in Table 1. It can be seen that most instances 

in the ordinary demand period can be solved to optimality within 2 hours if the number of rides 

is no larger than 40. Both the CPU time for solving the linear relaxation problem and that for 

obtaining the optimal integer solution would increase rapidly as the number of rides increases. 

Among the three demand scenarios, the instances in the ordinary demand period are the most 

computationally intensive, probably because of the long time horizon. On the contrary, the 

instances in the peak-hour demand period are the easiest to solve. In fact, all the instances label 

as ‘p-XX-XX’ in Table 1 are solved at the root node except one instance ‘p-120-15’. The 

transition demand period lies in the middle. By comparing the results of these instances solved 

by the proposed approach with and without valid inequalities, we can find that the valid 

inequalities increase the likelihood of an instance being solved at the root node. 

We further explore the effects of the number of rides and the slack time on the 

performance of SAMw/P services. The results are illustrated in Figure 1. We can see from 

Figure 1 (a) that with the increasing number of rides, the optimal fleet size increases steadily 

and somehow in a linear manner. On the contrary, the slack time has a negative effect on the 

fleet size, although the impact is marginal. The result is within our expectation because a larger 

slack time suggests that the riders are happy to accept a later arrival time at their destinations. 

This provides more flexibility to the service providers to employ an effective RM&VD plan 

which requires a smaller number of SAVs and achieves a high vehicle utilization. The findings 

are also consistent with the improved usage rate of SAV when the slack time becomes larger 

in Figure 1 (d). Figure 1 (b) illustrates the variation of profit in different scenarios. It shows 

that the profit will increase rapidly with more riders choosing the SAM services and the SAM 

services will become more profitable if the riders accept later arrival times. The results imply 

that the SAM service providers could earn more profit by serving more riders (see Figure 1 (c)) 

with a larger fleet (See Figure 1(a)). However, we caution that the increment of profit may 

decrease as the number of the rides grow further due to the law of diminishing marginal utility.  
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Table 1. Comparison of the results with and without valid inequalities for randomly generated instances 

 Without valid inequalities  With valid inequalities 

Instance #LPSolved 
LP_CPU Time 

(s) 
#Solved #SolvedR 

T_CPU Time 

(s) 
#Column #Node  #LPSolved 

LP_CPU Time 

(s) 
#Solved #SolvedR 

T_CPU Time 

(s) 
#Column #Cut #Node 

o-10-5 10 19.22 10 10 19.24 474 1.00  10 18.74 10 10 18.74 474 0 1.00 

o-10-10 10 18.63 10 10 18.63 514 1.00  10 18.90 10 10 18.90 514 0 1.00 

o-10-15 10 18.89 10 10 18.90 544 1.00  10 19.02 10 10 19.02 544 0 1.00 

o-20-5 10 23.70 10 10 23.70 6,053 1.00  10 23.10 10 10 23.11 6,053 0 1.00 

o-20-10 10 23.27 10 10 23.28 6,934 1.00  10 23.30 10 10 23.30 6,934 0 1.00 

o-20-15 10 23.82 10 8 41.46 8,391 2.80  10 25.41 10 8 35.95 8,137 2.6 2.60 

o-30-5 10 35.52 10 8 65.54 36,418 1.80  10 43.83 10 8 63.25 36,415 4 1.40 

o-30-10 10 44.13 10 7 62.06 42,612 1.50  10 49.31 10 8 50.95 42,610 0.9 1.30 

o-30-15 10 58.16 10 9 71.68 50,370 1.20  10 58.14 10 9 72.05 50,370 0 1.20 

o-40-5 10 645.31 9 8 682.63 124,635 1.67  10 636.06 9 8 691.25 124,635 0 1.67 

o-40-10 10 1084.78 10 7 1397.32 147,486 1.60  10 1081.10 10 7 1401.68 147,486 0 1.60 

o-40-15 10 1795.60 9 9 1916.38 185,684 1.00  10 1787.77 9 9 1929.63 185,684 0 1.00 

o-50-5 9 4470.92 5 5 2963.47 241,936 1.00  9 4517.93 5 5 2931.34 241,936 0 1.00 

o-50-10 6 4795.78 3 3 5659.34 309,098 1.00  6 4823.22 3 3 5684.62 309,098 0 1.00 

o-50-15 2 4447.72 0 0 - - -  2 4419.12 0 0 - - 0 - 

p-30-5 10 1.12 10 10 1.12 86 1.00  10 1.04 10 10 1.04 86 0 1.00 

p-30-10 10 1.04 10 10 1.04 113 1.00  10 1.06 10 10 1.06 113 0 1.00 

p-30-15 10 1.07 10 10 1.07 142 1.00  10 1.08 10 10 1.09 142 0 1.00 

p-60-5 10 3.50 10 10 3.50 351 1.00  10 3.56 10 10 3.56 351 0 1.00 

p-60-10 10 3.68 10 10 3.68 485 1.00  10 3.72 10 10 3.72 485 0 1.00 

p-60-15 10 3.99 10 10 3.99 673 1.00  10 4.00 10 10 4.00 673 0 1.00 

p-90-5 10 8.36 10 10 8.36 956 1.00  10 8.14 10 10 8.15 956 0 1.00 

p-90-10 10 8.92 10 10 8.92 1,380 1.00  10 8.92 10 10 8.92 1,380 0 1.00 

p-90-15 10 10.17 10 10 10.18 1,972 1.00  10 10.23 10 10 10.23 1,972 0 1.00 

p-120-5 10 17.90 10 10 17.90 1,726 1.00  10 16.60 10 10 16.60 1,726 0 1.00 

p-120-10 10 19.01 10 10 19.02 2,597 1.00  10 18.82 10 10 18.83 2,597 0 1.00 

p-120-15 10 22.57 10 9 35.24 3,897 2.00  10 22.24 10 9 34.97 3,897 0 2.00 

t-30-5 10 14.27 10 10 14.30 2,313 1.00  10 13.66 10 10 13.66 2,313 0 1.00 

t-30-10 10 14.06 10 9 14.79 2,936 1.60  10 13.80 10 9 13.83 2,936 0 1.60 

t-30-15 10 14.10 10 9 139.06 3,726 5.20  10 16.92 10 9 151.08 3,726 3.6 1.80 

t-60-5 10 22.79 10 10 22.80 20,436 1.00  10 22.40 10 10 22.40 20,436 0 1.00 

t-60-10 10 24.66 10 6 158.00 28,277 10.60  10 26.88 10 7 166.48 28,277 0.7 8.20 

t-60-15 10 33.16 9 6 114.51 38,499 5.67  10 36.23 9 7 109.04 38,090 0.3 5.00 

t-90-5 10 450.75 10 6 736.36 75,852 2.40  10 448.64 10 6 750.87 75,852 0 2.40 

t-90-10 10 1298.69 7 6 1379.62 98,133 2.14  10 1300.44 7 6 1407.97 98,133 0 2.14 

t-90-15 10 3086.52 2 2 1411.31 106,885 1.00  10 3089.12 2 2 1472.18 106,885 0 1.00 

t-120-5 5 3522.32 2 2 3610.19 175,612 1.00  5 3567.10 2 2 3684.86 175,612 0 1.00 

t-120-10 2 5131.57 0 0 - - -  2 5094.71 0 0 - - - - 

t-120-15 0 - 0 0 - - -  0 - 0 0 - - - - 



5 

 

 

Figure 1. Effects of the ride number and the slack time on system performance 

4. Conclusions 

This study investigated the fleet sizing problem of SAM services considering ride-

pooling and vehicle dispatching. A set parking model was formulated for the considered 

problem. A tailored BCP approach was developed to find a global optimal solution. The pricing 

problem within the BCP approach is NP-hard in the strong sense and we proposed a customized 

two-phase method to effectively address it. The solution methods were compared and evaluated 

by numerical experiments and the results have demonstrated their competence under different 

problem settings. Further research work can be undertaken in several aspects, among which 

the first and most important future work is to develop more efficient algorithms or heuristic 

methods for solving large-scale problems. The current sensitivity analyses were also limited 

by the instances that can be solved to optimality. In the future when more advanced and 

efficient methods are available, real-life case studies and impact analyses need to be conducted. 
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