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1. Introduction

Shared autonomous electric vehicles (SAEVs) are expected to create both positive and negative
externalities. Reclaimed urban space [1, 2, 3], lower per-mile costs relative to ride-sourcing thanks
to full automation, and a greener environment from electric powertrain technology can begin to
address persistent issues of inequity that affect transportation disadvantaged communities and5

low-income neighborhoods [4, 5, 6, 7, 8, 9]. On the other hand, municipalities will need to manage
competing interests at the curb and may even create dedicated pickup/dropoff zones [2, 10, 11, 12].
Furthermore, potential gains in mobility and accessibility will be offset by empty vehicle miles
traveled (eVMT), that if left unregulated, could lead to worse congestion across cities [13, 14].
While some experts have argued for congestion-based pricing that would penalize eVMT [15, 16],10

SAEV fleet operators will inherently want to minimize eVMT given limited battery range and long
charging time. In general, there are three sources of eVMT: travel to a pickup location, travel to
a charging station (cVMT), and repositioning the vehicle after completing the final trip (rVMT)
[17, 18, 19].

Early SAEV studies on a grid network used rule-based charging and low-impact repositioning15

to prevent oversupplying adjacent zones, resulting in 2.1-11.1% eVMT [20, 21]. Others explored re-
balancing idling non-electric SAVs with time-varying demand flow across arcs [22]. A repositioning
algorithm based on greedy assignment found that repositioning can lead to a 20% increase in the
share of served SAV requests [23]. Even a 3-6% increase in eVMT, as observed by an assignment
strategy study using a fixed-trip dataset [24], can shorten the range of SAEVs to serve passenger20

trips. Even if Level 3, or direct current fast charging (DCFC), chargers are used for SAEVs, a
drop in the supply of vehicles may increase pick-up eVMT, reduce fleet operation revenue, and
create a cycle of diminished average fleet state of charge (SOC).

To minimize the negative effects of charging downtime and rVMT, fleet operators can couple
charging and repositioning activities. Previously unexplored for SAEVs, this study introduces25

an optimization framework to manage charging and repositioning activities jointly. This synergy
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is explored for the Bloomington, Illinois, region using POLARIS, an agent-based model [25, 26,
27]. The synergy is evaluated on its ability to improve operational efficiency (rider wait times),
externalities (rVMT and cVMT), and operations (average daily trips per SAEV).

2. Methodology30

For each zone, j, the supply of vehicles, sj, accounts for: (i) vehicles idling at that zone j with
SOC higher than SOCmin, and (ii) non-idle vehicles doing different operations that are expected
to eventually idle at zone j (i.e., dropoff in which the last customer is at zone j, repositioning to
zone j or repositioning to and then charging at zone j). The minimum supply at zone j is fj,
which is adjusted in agreement with the expected demand for each zone. The slack variable, δj,35

indicates the unmet demand at zone j. In addition, the number of EVCS plugs available at zone
j is denoted as Cj.

With respect to variables associated with each vehicle, I is the set of idle vehicles. For each
vehicle i ∈ I the binary variable xi,j takes the value 1 if the vehicle i will perform a repositioning
trip to zone j and 0 otherwise. Likewise, ai,j represents whether the vehicle i will perform a40

repositioning trip and then charge at zone j. For each idle vehicle, the current SOC is denoted as
SOCi. In the formulation that follows, the binary variables xi,j and ai,j are continuous variables
between zero and one. Since each vehicle can undertake only one operation at a time, the sum of
xi,j and ai,j cannot exceed one. To avoid queuing at the EVCS, the number of vehicles sent to each
zone to charge cannot exceed the number of available plugs. Finally, the goal is to keep the supply45

in each zone higher than the estimated demand fj. The variable vi,j is an indicator variable that
takes value of 1 if vehicle i has SOCi ≥ SOCmin and Ij is the set of idle vehicles that is currently
at zone j. The current supply sj must balance with the vehicles coming to and leaving from zone
j. In cases where it is not possible to serve all zones, the variable δj has the supply deficit at that
zone. The complete formulation is as follows:50

min
ai,j ,xi,j ,δj

J =
∑

i∈I,j∈Z

ti,j

(
xi,j + ai,j

)
−

∑
i∈I,j∈Z

αai,j

(
SOCmax − SOCi

)
+ β

∑
j∈Z

δj,

s.t.,

0 ≤ xi,j ≤ 1 i ∈ I, j ∈ Z,
0 ≤ ai,j ≤ 1 i ∈ I, j ∈ Z

0 ≤
∑
j∈Z

ai,j ≤ 1, i ∈ I∑
i∈I

ai,j ≤ Cj j ∈ Z

fj + δj ≥ sj +

(∑
i∈I

ai,j + xi,j

)
−
(∑
i∈Ij

ai,j + xi,j

)
vi j ∈ Z.

(1)

The objective function J attempts to reduce travel cost, increase charging, and ensure enough
supply in each zone with parameters α and β to be specified. The value of α weights the charge
priority (CP) and β the demand priority (DP). Due to a particular structure of the problem, the
Mixed Integer Linear Programming (1) can be solved as a Linear Programming and therefore with
reduced computational cost.55
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This framework is tested on the mid-sized Bloomington, Illinois region. The network has 185
TAZs, 7000 links, and 2500 nodes. The baseline SAEV demand is 68.1k trips, or a 10.6% mode
split (when there is 1 SAEV per 75 residents). Figure 1 shows a layout of the network, zones,
and EVCS. Table 1 summarizes the SAEV fleet parameters, EVCS network, and optimization
parameters used in the scenarios.60

 

plugs 

Figure 1: Bloomington Network

Table 1: Summary of model inputs

Parameter Value
EVCS DCFC Stations (50kW) 15
EVCS DCFC Plugs 334
SAEV Theoretical Range 100 mi
SAEV Fleet Size 1600
SAEV Starting SOC Normal(µ = 70, σ = 5)
SAEV Vehicle Efficiency 30 kWh/100 mi
SAEV Max SOC 90%
SAEV Min SOC 20%
Time trade-off (β) 1200s
Charge weight (α) 25s/SOC(%)

3. Results

The first scenario is the baseline scenario of rule-based charging without repositioning (1-
Baseline). The second scenario seeks to fulfill all requests and improve passenger wait times by
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allowing repositioning (2-Repositioning). The third scenario seeks to optimize the two events
jointly with a focus on meeting demand (3-Joint DP). A fourth scenario examined the trade-off65

between the two events to prioritize charging (4-Joint CP) by considering a minimum supply fj
25% lower.

Table 2 presents the changes between all four scenarios with respect to the following metrics:
total VMT, average daily trips (ADT) per SAEV, cVMT, rVMT, %eVMT, average pickup wait
times, and average charging time. Figure 2 presents the differences in average wait times (2a) and70

average fleet SOC throughout the day (2b).

Table 2: Summary of the results for the four different scenarios. Waiting time is in minutes. ATC is short for
Average Time in Charging operation per vehicle (in hours).

Case VMT ADT cVMT rVMT %eVMT Avg. Wait time ATC
1-Baseline 394K 42.3 13.5K 0 23.2 6.1 2.3
2-Repositioning 422K 42.7 15.5K 39.1K 39.3 4.6 2.8
3-Joint-DP 417K 42.8 20.7K 31.4K 29.1 3.7 1.7
4-Joint-CP 421K 43.1 20.3K 20.0K 27.3 4.9 1.7
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Figure 2: Wait time (a) and State of Charge (b) for the four different scenarios.

4. Conclusion

The coupled framework reduced ATC by strategically charging during periods of low demand
and avoiding large queues that rule-based charging exhibits. Since charging was prioritized when
demand-to-supply was largely met, the coupled scenarios outperformed baseline scenarios during75

the PM peak hours when repositioning to meet higher demand was prioritized. Average wait times
for the joint strategies were marginally higher than baseline repositioning for the AM peak but
were nearly 3 and 9 minutes shorter during the PM peak for Joint-DP and Joint-CP strategies,
respectively. The corresponding average SOC was lower after the PM peak, even though it started
5%-15% higher. The joint strategies reduced %eVMT compared to the baseline repositioning80

4



scenario and served more trips per SAEV, on average. The Joint-DP had the lowest average wait
time of 3.7 minutes, a 40% time savings to the base.

This paper reveals how fleet operators can exploit the synergy of jointly modeling reposition-
ing and charging to increase revenue-generating opportunities, especially in the PM peak, and
lessen eVMT externalities. Future work should ascertain synergies under charger-abundant set-85

tings, EVCS queuing costs versus the charger availability constraint, and time-dependent joint
optimization.
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