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Introduction 

Increasing frequencies and intensities of natural disasters such as hurricanes make evacuation, the 

primary action to protect human life from natural disasters, no longer rare events. Timely and accurate 

forecast of evacuation demand is key for emergency responders to plan and organize orderly evacuation 

before/during a disaster. Exiting efforts in evacuation demand forecasting comprise two lines of work. 

On one hand, behavior-based models leverage regression models and survey data from previous 

disasters to investigate how certain factors affect evacuation demand; and forecasts of evacuation 

demand can be made by applying fitted regression models to a given disaster context. On the other 

hand, flow-based models apply machine learning and other dynamic methods in quest of modeling and 

predicting large-scale population movement under a disaster. These two lines of work have three critical 

limitations. First, behavior-based models are static. The factors incorporated in behavioral models, such 

as social-demographics, environmental cues and geographical characteristics, are usually collected by 

surveys. This means the behavioral models can not be implemented in real time, and are unable to 

utilize real-time evacuation information as a disaster unfolds. Second, flow-based models typically have 

short prediction time windows, ranging from minutes to hours. This limits the amount and timeliness of 

preparations emergency responders can make before large-scale population movement happens. Third, 

flow-based models and certain behavioral models are formulated at aggregated zone levels, and 

overlook individual heterogeneities within zones.  

This study addresses these limitations in evacuation demand forecasting, and develops a state-transition 

model that is dynamic, has a prediction window of days, and accounts for individual heterogeneities. 

The state-transition model formulates evacuation as a stochastic decision making process at the 

individual level regarding whether to evacuate at time t+1 if the individual has not evacuated at time t. 

To accomplish this task the state-transition model faces two challenges. First, capturing dynamic 

decisions made by individuals requires the model to have time-varying transition probabilities, which is 

non-trivial. To overcome this challenge, we develop a survival model formulation for the state-transition 

model, which allows the transition probabilities to be history dependent. Second, large-scale population 

movement usually happens suddenly during evacuation, leading to a surge in evacuation demand. 

Making demand forecasts before the surge occurs is critical for emergency response but faces the 

difficulty in lack of data, as there could be few to no evacuation before the demand surge. To overcome 

this challenge, we integrate insights from behavioral models into the state-transition model, which 

grants the state-transition model a hyperopic view of possible future changes in evacuation demand at 

the early stage of a disaster. 

Methodology 

The state-transition model describes the following decision process: on each day, an individual can 

decide either to evacuate or to stay at home, if the individual stayed on the previous day. Let 𝜏𝑖,𝑡 be the 



number of days individual i has stayed on day t. The two possible decisions on day t can be denoted by 

state transitions as follows. 

 Evacuation on day t: 𝐻𝑡−1 → 𝐷𝑡|𝜏𝑖,𝑡; 

 Stay at home on day t: 𝐻𝑡−1 → 𝐻𝑡|𝜏𝑖,𝑡. 

The symbols 𝐻𝑡 and 𝐷𝑡 represent staying at home and evacuating on day t, respectively. Two properties 

of the above state transitions are worth noting: first, they are history dependent, influenced by how 

long a person has already stayed at home; and second, they vary from individual to individual, indicated 

by the individual-specific 𝜏𝑖,𝑡. 

Let 𝑇𝑖 be a random variable denoting the number of days individual i stays at home before he/she 

evacuates (i.e. the survival time). The probabilities of the transitions can be expressed as in equations 

(1)-(2). 

𝑃(𝐻𝑡−1 → 𝐷𝑡|𝜏𝑖,𝑡) = 𝑃(𝑇𝑖 ≤ 𝜏𝑖,𝑡|𝑇𝑖 > 𝜏𝑖,𝑡−1) = 𝜆(𝜏𝑖,𝑡),                                     (1) 

𝑃(𝐻𝑡−1 → 𝐻𝑡|𝜏𝑖,𝑡) = 𝑃(𝑇𝑖 > 𝜏𝑖,𝑡|𝑇𝑖 > 𝜏𝑖,𝑡−1) =
𝑃(𝑇𝑖 > 𝜏𝑖,𝑡)

𝑃(𝑇𝑖 > 𝜏𝑖,𝑡−1)
=

𝑆(𝜏𝑖,𝑡)

𝑆(𝜏𝑖,𝑡−1)
,              (2) 

where 𝜆(𝜏𝑖,𝑡) ≡ 𝑃(𝜏𝑖,𝑡 ≥ 𝑇𝑖 > 𝜏𝑖,𝑡−1|𝑇𝑖 > 𝜏𝑖,𝑡−1) is the hazard function, and 𝑆(𝜏𝑖,𝑡) ≡ 𝑃(𝑇𝑖 > 𝜏𝑖,𝑡) is 

the survival function. The term 𝑇𝑖 > 𝜏𝑖,𝑡−1 indicates that individual i has not evacuated by day t-1, and 

the term 𝑇𝑖 ≤ 𝜏𝑖𝑡 indicates that individual i has evacuated by day t. 

From a state-transition perspective, the likelihoods of individual i evacuating or staying on day 𝑡𝑖 can be 

formulated as in equations (3) and (4), respectively. 

𝐿𝑖
𝐸(𝑡𝑖) = 𝑃(𝐻1|𝜏𝑖,1) ∙ ∏ 𝑃(𝐻𝑡−1 → 𝐻𝑡|𝜏𝑖,𝑡)

𝑡𝑖−1

𝑡=2

∙ 𝑃(𝐻𝑡𝑖−1 → 𝐷𝑡𝑖
|𝜏𝑖,𝑡𝑖

) 

= 𝑆(𝜏𝑖,1) ∙
𝑆(𝜏𝑖,2)

𝑆(𝜏𝑖,1)
∙

𝑆(𝜏𝑖,3)

𝑆(𝜏𝑖,2)
∙ ⋯ ∙

𝑆(𝜏𝑖,𝑡𝑖−1)

𝑆(𝜏𝑖,𝑡𝑖−2)
∙ 𝜆(𝜏𝑖,𝑡𝑖

) = 𝑆(𝜏𝑖,𝑡𝑖−1) ∙ 𝜆(𝜏𝑖,𝑡𝑖
) = 𝑓(𝜏𝑖,𝑡𝑖

),        (3) 

𝐿𝑖
𝐻(𝑡𝑖) = 𝑃(𝐻1|𝜏𝑖,1) ∙ ∏ 𝑃(𝐻𝑡−1 → 𝐻𝑡|𝜏𝑖,𝑡)

𝑡𝑖

𝑡=2

 

= 𝑆(𝜏𝑖,1) ∙
𝑆(𝜏𝑖,2)

𝑆(𝜏𝑖,1)
∙

𝑆(𝜏𝑖,3)

𝑆(𝜏𝑖,2)
∙ ⋯ ∙

𝑆(𝜏𝑖,𝑡𝑖
)

𝑆(𝜏𝑖,𝑡𝑖−1)
= 𝑆(𝜏𝑖,𝑡𝑖

).                                 (4) 

where 𝑓(𝜏𝑖,𝑡) ≡ 𝑃(𝑇𝑖 = 𝜏𝑖,𝑡) is the survival density function. Equations (3) and (4) show that under the 

survival model formulation, the likelihoods of state transitions reduce to simple forms. This allows 

employing likelihood-based methods such as maximum likelihood estimation or Bayesian inference to 

estimate and forecast 𝑇𝑖 for each individual i, and collectively the evacuation demand on a daily basis.  

To integrate behavioral model insights into the state-transition model, the likelihood function needs to 

account for not only observed evacuations by a given day as in equations (3) and (4), but also possible 

future evacuations predicted by behavioral models. Therefore, when behavioral model insights are 

integrated, the likelihood on a given day t becomes a composite function weighing the likelihood for 

observed evacuations and the likelihood for future trends of evacuation demand predicted by 

behavioral models, as in equation (5). 



𝐿∗(𝑡) = 𝑓(𝑜𝑏𝑠(𝑡), 𝑃(∆𝑝(𝑡)), 𝑃(∆𝑝(𝑡 + 1)); 𝒘),                                                 (5) 

where 𝑜𝑏𝑠(𝑡) is the likelihood of observed evacuations by day t, which can be calculated from 𝐿𝑖
𝐸(𝑡𝑖) 

and 𝐿𝑖
𝐻(𝑡𝑖), ∆𝑝(𝑡) is the behavioral-model predicted change in evacuation demand from day t to t+1. 

The weights 𝒘 determine how much observed evacuations and behavioral model predictions each 

contribute to the likelihood 𝐿∗(𝑡). 

Results 

Using Hurricane Harvey in 2017 as a case study, we apply the proposed state-transition model (without 

behavioral model insights) to forecast the evacuation demand in southern Texas from August 21 to 

August 31, considering that the hurricane made landfall in this area on August 25. The forecast is made 

daily, given the observed evacuation up to the day. The results are shown in Figure 1. 

 

Figure 1. State-transition model predictions of evacuation demand in comparison to observed 

evacuation demand. 

There are two key messages from Figure 1. First, as the state-transition model takes in newly observed 

evacuations over time, it is capable of adjusting the forecasts to approach the observations. Second, the 

state-transition model (without behavioral model insights) can not accurately forecast the peak 

evacuation demand before it happens. 

When behavioral model predictions are integrated into the state-transition model, we test 5 scenarios 

with different evacuation demand patterns from behavioral models. The results are shown in Figure 2. 



 

Figure 2. Scenario analysis to test the performance of state-transition model after integrating different 

behavioral model predictions. 

The key finding from Figure 2 is that when behavioral model predictions, even if inaccurate with respect 

to the observations, are integrated into the state-transition model, the state-transition model gains the 

ability to early capture the peak evacuation demand, at least in terms of it timing. 

Conclusion 

This study develops an innovative state-transition model with survival formulation and integrated 

behavioral model insights. Its novelties are two-fold. For model development, this study extends the 

conventional state-transition model to account for time-varying and individually heterogeneous 

transition probabilities. And for evacuation demand forecasting, it addresses the challenge of early 

prediction of sudden surge in evacuation demand. Our case study results show that the model can 

accurately forecast the timing of peak evacuation demand generally 2 days ahead, and consistently 

over-predict its magnitude. The results suggest potential value of the methodology in assisting 

emergency responders to plan, prepare and organize evacuations. 

 

Note 

This extended abstract is based on an ISTTT24 paper that is to be presented in July 2021 in Beijing and is 

also under review for possible publication at Transportation Research Part E. This abstract is submitted 

for presentation only at the ISTDM21 conference. 


