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1 Introduction1

It is predicted that Autonomous Vehicles (AVs) will enter the global vehicle market in the next2

few decades. The expected benefits associated with AVs, including increased safety and reduced3

traffic and parking congestion, may not be significant unless the vehicles become affordable and4

common (Litman, 2017). In the meanwhile, sharing mobility services will continue to grow,5

which greatly improves the vehicle and parking utilization rates. Therefore, it is desirable to6

develop efficient Shared Autonomous Vehicle (SAV) systems to make AVs more affordable and7

accessible.8

In the SAV systems, operators need to make efficient operational decisions to meet the needs9

of travel demand in both spatial and temporal dimensions. Efficient vehicle operations aim to10

generate high profits. Meanwhile, it also requires a high level of service to attract sufficient11

demand requests. Compared to Conventional Private Vehicles (CPVs), the mobility services12

provided by efficient SAV systems may be more convenient and flexible thanks to self-driving13

technologies. This paper focuses on the optimal assignment and relocation problem of SAV14

systems, while the competitions between SAVs and CPVs are explicitly modeled by a discrete15

choice model, in which the attributes such as travel time, travel cost, and level of service are16

considered to determine the market share of SAVs.17

Many studies have been conducted in the field to address the dispatching, fleet sizing, and18

pricing problems in vehicle sharing operations. Most of them focus on the vehicle relocation19

problem. The relocation of shared vehicles can be completed actively by relocation staff opera-20

tions (e.g., Kek et al., 2006) or passively by adopting pricing strategies to influence demand (e.g.,21

Barth et al., 2004 and Xu et al., 2018). The demand for transportation modes can be influenced by22

many factors. The elastic demand has been considered in the car-sharing literature, which mainly23

focus on the effectiveness of pricing strategies to rebalance the system (e.g., Jorge et al., 2015).24

These studies consider the influence of pricing on car-sharing demand in car-sharing relocation25

problems. There is a limited number of empirical studies that consider the impact to demand26

from other factors such as travel time. Catalano et al. (2008) applied the multinomial logit (MNL)27

model that revealed the competition of car-sharing service with private vehicles, carpooling, and28

public transit. Zhou and Kockelman (2011) also adopted the MNL to predict the likelihood of29

choosing car-sharing as a travel mode among the existing ones. However, there are few studies30

using the passive relocation examine the effect of factors other than pricing. For example, Huang31

et al. (2018) study an optimal station location problem of car-sharing with mode choice and non-32

linear demand affected by travel time. In our study, we take into account the impacts from travel33

costs, travel times, and level of service to SAV demand. The level of service is represented by the34

availability of vehicles and availability of parking spaces.35

2 Methodology36

We examine the vehicle assignment and relocation problem for one-way SAV systems. To deter-37

mine the optimal vehicle assignment and relocation plan, we propose a time-space network flow38

model, which is formulated as a non-linear mixed-integer program. A binary logit discrete choice39

model is incorporated into the optimization program to capture travelers’ mode choices between40
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SAVs and CPVs. The proposed non-linear mixed-integer program is computationally challeng-1

ing and expensive. To make this problem tractable, we first reformulate the original model to2

make the logarithmic functions the only non-linear constraints. A piece-wise linear approxi-3

mation method is developed to linearize the non-linear constraints. Furthermore, the number4

of break-points has significant effects on the solution quality and efficiency. More break-points5

leads to a tighter linear approximation so that the piece-wise linear function can have any degree6

of accuracy (see, e.g., Wang and Lo (2010); Liu and Wang (2015); Wang et al. (2015)). However,7

introducing a large number of break-points will significantly increase the computation burden.8

Therefore, the proper break-points should be carefully selected to achieve a good approximation9

within an acceptable computation time. We propose a dynamic programming to determine the10

optimal break-point selections. By applying this approach, we show that the proposed solution11

approach can improve the approximation accuracy without increasing too much computation12

requirement.13

3 Main Results14

We apply our approach to real-world cases based on the city of Singapore collected from a car-15

sharing company BlueSG. In this data set, a total of 10 stations are selected. We set the SAV16

fleet size from 100 to 400 and the demand from 1000 to 5000 in order to create 20 scenarios. For17

each scenario, five demand instances are generated from a given probability distribution using18

simulation. Our numerical findings are summarized as follows:19

• The computational results show our approach can consistently produce satisfactory solu-20

tions in all instances. We use a case with four times evenly distributed break-points as the21

benchmark. By using the dynamic programming, the largest objective value gap between22

our approach and the benchmark is less than 1%. Moreover, the computation time of our23

approach reduced by 90 % compared with the time of the benchmark on average.24

• Under our optimal assignment and relocation policies, there is more relocation activities25

when the demand pressure is moderate. Consequently, it leads to a high fulfillment rate and26

market share of SAVs. Few relocations have been conducted when the demand pressure is27

extremely low or high.28

• We replace the SAVs in the original problem with the Shared Conventional Vehicles (SCVs)29

to study the impact of vehicle types. SAV services of high price may have a high fulfillment30

rate when the demand pressure is high. In both median and low price cases, the SCV31

systems show less vehicle utilization. When the demand pressure is extremely low or high,32

the gap between cases with SAVs and SCVs is small.33

• After considering the daily cost of SAVs in the objective function, the maximum profit is34

achieved when the total demand is 10 to 15 times the SAV fleet size. A moderate demand35

pressure is the most suitable for SAV systems. Too high or too low demand will lead to a36

decrease in profits.37

• We generate different demand sets to study the influence of city size and travel distance38

distribution. The SAV services have less fulfillment rate and less market share in a larger39
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city. Nevertheless, demand sets with more short travel requests lead to a higher fulfillment1

and lower utilization of SAV systems.2

• We test the impact of demand symmetry to SAV systems. There are more relocation ac-3

tivities when the demand is asymmetric compared to symmetric ones in all scenarios. But4

the traffic efficiency is still not as good as that under symmetric demand. Given the same5

demand quantity, the profit under an asymmetric demand set is lower than under a sym-6

metric case.7

4 Conclusion8

In this paper, we address the optimal SAVs operation problem with competition from CPVs. We9

propose a solution approach for solving the original model. A piece-wise linear approximation10

method is developed to linearize the non-linear constraints. Further, a dynamic programming11

is developed to select optimal break-points. We show that the proposed solution approach can12

consistently and efficiently obtain optimal solutions through quantitative computational experi-13

ments. With optimal assignment and relocation decisions, the SAVs may outperform the CPVs.14

Numerical results reveal that when the demand pressure is moderate, SAVs can achieve a higher15

fulfillment rate and market share due to more relocation activities. Furthermore, we study the16

optimal fleet size and find that the maximum profit is achieved when the demand pressure is17

moderate. We also evaluate the influence of demand patterns as well as city sizes. The results18

show that SAV services may be preferable in a small size city with more short-distance and19

asymmetric travel demand. We may extend this work in future studies by considering stochastic20

nature in transportation systems or a dynamic case.21
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