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Introduction 

 Autonomous vehicle (AV) technology holds great potential in enhancing traffic safety, elevating 

roadway capacity, and assisting AV management and development (Litman, 2020; Woldeamanuel and 

Nguyen, 2018). Various strategies have been proposed to facilitate AV technology deployment (Arnold et 

al., 2019; Levin and Boyles, 2015).  

 While fruitful investigations have been conducted for AVs’ benefits, rare efforts have been made 

to prepare the traffic system for the unprecedented changes induced by AVs. To achieve this goal, 

identifying AVs from traffic stream is the premise. AV identification technology could extend the video-

based traffic surveillance system by adding a dynamic-based AV identification module on the traditional 

appearance-based vehicle classification framework (Kafai and Bhanu, 2011). With AVs identified, while 

following AVs, human-driven vehicles (HVs) can drive with caution to reduce crash risk and AVs could 

reduce the car-following distance for space efficiency. Transportation planners can make appropriate 

decisions to better handle mixed traffic stream, such as when to open AV dedicated lanes. Further, 

naturalistic AV field trajectory data is available for assessment. AV safety, mobility, and energy 

performance can be investigated to recognize AV technology impacts based on realistic AV behavior as 

compared to simulation data. The yielded insights could be referred to during AV development, i.e., ACC 

configurations, to promote AV deployment. 
Despite such potential, as far as we know, there are no published studies regarding AV 

identification except a patent assigned to Ford Global Technologies LLC in 2017 (Pilutti et al., 2017). The 

identification was briefed as collecting related data and then determining. No technical details were 

introduced. 

 Motivated by this research gap, this study builds machine learning models to conduct AV 

identification utilizing vehicle car-following data. Several models are compared including artificial neural 

network (ANN), long short-term memory network (LSTM), support vector machine (SVM), k-nearest 

neighbors (KNN), and random forest (RF). Different car-following periods varying from 0.2s to 5s are 

tested. Identification accuracy of all models stays relatively stable across different periods. The highest 

identification accuracy is achieved by LSTM with an average of 96.2%, followed by ANN, KNN, RF, and 

SVM. 

Methodology 
This section first presents 4 datasets and data preparation, then introduces adopted models. 

Datasets 

4 datasets are used in this study. The first dataset is HISTORIC data collected by (Yao et al., 2020) 

with pure HV. The second dataset is Dan’s ACC data collected by (Gunter et al., 2020) with pure AV. The 

third dataset is mixed traffic data collected by this study. The last dataset is part of Open ACC data collected 

by (Ciuffo et al., 2020) including pure AV and mixed traffic.  

 

Data preprocessing 

The above datasets are processed before model training.  

Vehicle longitude and latitude are used to compute vehicle location. 

1. Linear interpolation is conducted on location to fill up the missing data. 

2. Car-following distance is derived based on vehicle location. 



3. Moving average smoothing is applied to the collected speed in HISTORIC dataset given the 

less satisfying GPS accuracy, i.e., 0.28 m/s. Data is resampled to 0.1s to be consistent with 

other datasets.  

4. Vehicle acceleration is calculated as the first-order difference of vehicle speed. 

5. Unstable car-following periods are excluded, for example, data at the beginning or end of the 

test runs.  

6. 4 datasets are merged. The car-following distance, preceding vehicle speed, following vehicle 

speed, and following vehicle acceleration are standardized between -1 to 1 as model inputs. 

7. 1 denoting AVs and 0 denoting HVs are set as model output. 

After the above data preprocessing, the merged dataset has 1,837,002 data points with an interval 

of 0.1s. 

 

Machine learning models 

This subsection introduces different models. Before model training, data is segmented by the 

observation period ∆𝑡. These observations are randomly shuffled and then separated into 2 subsets with a 

ratio of 9:1. The greater subset is used for model training and validation. 10-fold cross-validation is 

conducted. The smaller subset is used for model testing. 

Artificial neural network 

ANN is the foundation of artificial intelligence. The number of hidden layers N, neurons Nneuron, 

batches Nbatch, and epochs Nepoch are adjusted to avoid underfitting and overfitting for the best results.  

Long short-term memory network  

LSTM is a type of recurrent neural network. It is capable of learning order dependence in time 

series data (Zhang et al., 2019). The number of hidden layers N, dropout layers D, neurons Nneuron, batches 

Nbatch, and epochs Nepoch and the dropout rate αk are adjusted to avoid underfitting and overfitting for the 

best results.  

Support vector machine 

The SVM model finds the best decision boundary, i.e., decision hyperplane, to separate different 

classes. The distance from the best hyperplane to the nearest data point of each class is the greatest. Different 

kernels are tested to produce the best results.  

k-nearest neighbors 

For the KNN model, we first calculate the Euclidean distance from the query observation to the 

classified observations. The classified observations are ordered by increasing distance. The class of the 

query observation is the majority voting of the top k observation classes. k is adjusted for the best model 

results.  

Random forest 

The RF model has T decision trees. The maximum depth of each decision tree is NT. Each decision 

tree produces each result. The final result is derived as the majority voting of all trees’ results. T and TN are 

tuned for the best model performance.  

Results 
After model tuning, model performance is compared, shown in Table 1. AV identification accuracy 

of all models stays relatively stable across different observation periods ∆𝑡. LSTM produces the highest 

identification accuracy with an average of 96.2%, followed by ANN (93.7%), KNN (91.5%), RF (91.4%), 

and SVM (86.9).  

Table 1 Model comparison. 

Model 
Observation period ∆𝑡 (s) 

Average 
0.2 0.5 1.0 2.0 3.0 4.0 5.0 

ANN 92.2 93.4 93.99 93.98 94.01 93.96 93.8 93.7% 



LSTM 96.0 96.2 96.2 96.1 96.2 96.4 96.2 96.2% 

SVM 87.3 87.0 86.7 87.2 86.6 86.9 86.8 86.9% 

KNN 92.1 91.6 91.8 91.6 91.2 91.0 91.1 91.5% 

RF 91.5 91.4 91.7 91.3 91.3 91.8 90.9 91.4% 

 

Conclusion 
This study adopts machine learning models to conduct AV identification including ANN, LSTM, 

SVM, KNN, and RF. 4 car-following datasets involving various AV makes from different manufacturers 

are merged to build a comprehensive identification model. Different car-following periods varying from 

0.2s to 5s are tested. AV identification accuracy of all models stays relatively stable across different periods. 

The highest identification accuracy is achieved by LSTM with an average of 96.2%, followed by ANN, 

KNN, RF, and SVM. AV identification can be utilized to benefit roadway users, traffic management, and 

AV development.  

It is noted that not all AVs with different ACC control logics are enumerated here given the resource 

limit. This study intends to be a methodology demonstration rather than an engineering implementation. 

Thus, whenever a new AV car-following dataset is available, it can be included in the existing dataset and 

the presented methodology can be conducted to update the AV identification model.  
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