Conference Sessions

PRESENTERS (109)
Abdul­la, Bahrul­la (1)
Ahamed, Tan­vir (1)
Ali, Rafaqat (1)
Alshu­rafa, Ahmed (1)
Ansari, Reza (1)
Axhausen, Kay (1)
Azeve­­do-Sa, Hebert (1)
Bal­ac, Milos (1)
Bal­lare, Sud­heer (1)
Bayen, Alexan­dre (1)
Bhat, Chan­dra (1)
Bramich, Daniel (1)
Bur­sa, Bar­tosz (1)
Cai, Xiaolin (1)
Calderon, Fran­cis­co (1)
Caros, Nicholas (1)
Chang, Yohan (1)
Chen, Rong­sheng (1)
Chen, Xiang­dong (1)
Daus, Matthew (1)
Dean, Matthew (1)
Dong, Jiqian (1)
Du, Lili (1)
Dug­gal, Mausam (1)
Eftekhar, Zahra (1)
Fakhrmoosavi, Fate­meh (1)
Fer­nan­do, Cel­so (1)
Fil­ipovs­ka, Moni­ka (2)
Flan­na­gan, Car­ol (1)
Fourati, Walid (1)
Geroli­m­in­is, Niko­las (1)
Gong, Feng­min (1)
Gong, Yun­hai (1)
Gopalakr­ish­nan, Ragaven­dran (1)
Guan, Xiangyang (2)
Guo, Hao (1)
Guo, Xiao­tong (1)
Guo, Yi (1)
Hale, David (1)
Hu, Zijian (1)
Jayara­man, Suresh Kumaar (1)
Kaneko, Noriko (1)
Kavia­n­ipour, Moham­madreza (1)
Kawasa­ki, Yosuke (1)
Ke, Jin­tao (2)
Kleiber, Mar­cel (1)
Kon­tou, Eleft­he­ria (1)
Koushik, Gun­takan­ti Sai (1)
Ladi­no, Andres (1)
Lee, Tony (Yoon-Dong) (1)
Levin, Michael (1)
Li, Ang (1)
Li, Can (1)
Li, Qian­wen (1)
Li, Xiaopeng (1)
Liu, Hen­ry (1)
Liu, Xiao­hui (1)
Liu, Zhao­cai (1)
Lorente, Ester (1)
Lou, Yingyan (2)
Luo, Zhix­iong (1)
Ma, Jiaqi (1)
Ma, Mingy­ou (1)
Mah­mas­sani, Hani (1)
Mar­tinez, Irene (1)
Miah, Md Mintu (1)
Miller, Eric (1)
Mintsis, Evan­ge­los (1)
Mirali­naghi, Moham­mad (1)
Moham­ma­di­an, Abol­fa­zl (Kouros) (1)
Mol­nar, Tamas (1)
Nakan­ishi, Wataru (1)
Nam, Daisik (1)
Okuhara, Rui (1)
Rahi­mi, Ehsan (1)
Ros-Roca, Xavier (1)
Sal­lard, Aurore (1)
Sayed, Md Abu (1)
Seo, Toru (1)
Shen, Hui (2)
Song, Zhanguo (1)
Su, Qida (1)
Tafreshi­an, Amirmah­di (1)
Tang, Xin­di (1)
Tay, Tim­o­thy (1)
Tian, Qiong (1)
Tsub­o­ta, Takahi­ro (1)
Ume­da, Shogo (1)
Vacek, Lukas (1)
Wang, Jingx­ing (1)
Wang, Mengx­in (1)
Wang, Shen­hao (1)
Wang, Yineng (1)
Wang, Yiyang (1)
Wei, Bangyang (1)
Xie, Tingt­ing (1)
Xu, Min (1)
Xu, Zhengt­ian (1)
Yan, Huimin (1)
Yang, Chen (1)
Yang, Di (1)
Yang, Hai (1)
Yang, Jie (1)
Zhang, Guo­qing (1)
Zhang, Ke (1)
Zhang, Kenan (1)
Zhang, Wen­wen (1)
Zheng, Zhengfei (1)
Zock­aie, Ali (1)

T‑4: Regular Session/Behavior — Ragavendran Gopalakrishnan 

Sub­mis­sion: Behav­ioral Mod­els of Users in Ride-Shar­ing
Pre­sen­ter: Ragaven­dran Gopalakr­ish­nan
Authors: The­ja Tula­ban­du­la (Uni­ver­si­ty of Illi­nois at Chica­go)*; Ragaven­dran Gopalakr­ish­nan (Queens University)

T‑1: Regular Session/Emerging Mobility — Kenan Zhang 

Sub­mis­sion: A Gen­er­al Spa­tiotem­po­ral Equi­lib­ri­um Mod­el of Ride-Hail Mar­ket
Pre­sen­ter: Kenan Zhang
Authors: Yu (Mar­co) Nie (North­west­ern Uni­ver­si­ty)*; Kenan Zhang (North­west­ern University)

T‑2: Regular Session/Freight — Mausam Duggal 

Sub­mis­sion: Unknown to Known: Pre­dict­ing Truck GPS Com­mod­i­ty Using Machine Learn­ing
Pre­sen­ter: Mausam Dug­gal
Authors: Mausam Dug­gal (WSP); Bryce W Shar­man (WSP)*; Rick Don­nel­ly (WSP); Matthew Roor­da (Uni­ver­si­ty of Toron­to); Sun­dar Damodaran (Min­istry of Trans­porta­tion of Ontario); Shan Sure­shan (Min­istry of Trans­porta­tion of Ontario)

T‑3: Regular Session/Data — Di Yang 

Sub­mis­sion: Explor­ing the Pos­si­bil­i­ty of Out­lier Detec­tion Using Func­tion­al Data Analy­sis for Proac­tive Safe­ty Man­age­ment
Pre­sen­ter: Di Yang
Authors: Di Yang (New York Uni­ver­si­ty)*; Kaan Ozbay (New York Uni­ver­si­ty); Kun Xie (Old Domin­ion Uni­ver­si­ty); Hong Yang (Old Domin­ion Uni­ver­si­ty); Fan Zuo (New York Uni­ver­si­ty); Di Sha (New York University)

T‑4: Regular Session/Behavior — Zhengtian Xu 

Sub­mis­sion: Under­stand­ing Ride-Sourc­ing Dri­vers’ Cus­tomer-Search Behav­ior
Pre­sen­ter: Zhengt­ian Xu
Authors: Jun­ji Ura­ta (Uni­ver­si­ty of Michi­gan)*; Jin­tao Ke (Hong Kong Uni­ver­si­ty of Sci­ence and Tech­nol­o­gy); Zhengt­ian Xu (Uni­ver­si­ty of Michi­gan); Guo­jun Wu (Worces­ter Poly­tech­nic Insti­tute); Yafeng Yin (Uni­ver­si­ty of Michi­gan); Hai Yang (Hong Kong Uni­ver­si­ty of Sci­ence and Tech­nol­o­gy); Jieping Ye (Didi Chuxing)

T‑1: Regular Session/Emerging Mobility — Min Xu 

Sub­mis­sion: Address­ing the Fleet Siz­ing Prob­lem for Shared-and-Autonomous-Mobil­i­ty Ser­vices
Pre­sen­ter: Min Xu
Authors: Min Xu (The Hong Kong Poly­tech­nic University)*

T‑2: Regular Session/Freight — Guoqing Zhang 

Sub­mis­sion: An Inte­grat­ed Loca­tion-Inven­to­ry Mod­el for the Health­care Sup­ply Net­work under Sto­chas­tic Demands
Pre­sen­ter: Guo­qing Zhang
Authors: Guo­qing Zhang (Uni­ver­si­ty of Wind­sor)*; Mohammed Almanaseer (Uni­ver­si­ty of Wind­sor); Xiaot­ing Shang (Uni­ver­si­ty of Windsor)

T‑3: Regular Session/Data — Xiangyang Guan 

Sub­mis­sion: Cor­rect­ing Bias­es in Using Emerg­ing Big Data for Mobil­i­ty Research: A Like­li­hood-Based Approach
Pre­sen­ter: Xiangyang Guan
Authors: Xiangyang Guan (Uni­ver­si­ty of Wash­ing­ton)*; Cyn­thia Chen (Uni­ver­si­ty of Wash­ing­ton); Shuai Huang (Uni­ver­si­ty of Washington)

Break 

Break

Keynote Session 4 — Alexandre Bayen 

Title: Lagrangian Con­trol at Large and Local Scales in Mixed Auton­o­my Traf­fic Flow
Speak­er: Alexan­dre Bayen
Abstract: This talk inves­ti­gates Lagrangian (mobile) con­trol of traf­fic flow at local scale (vehic­u­lar lev­el). The ques­tion of how self-dri­ving vehi­cles will change traf­fic flow pat­terns is inves­ti­gat­ed. We describe approach­es based on deep rein­force­ment learn­ing pre­sent­ed in the con­text of enabling mixed-auton­o­my mobil­i­ty. The talk explores the grad­ual and com­plex inte­gra­tion of auto­mat­ed vehi­cles into the exist­ing traf­fic sys­tem. We present the poten­tial impact of a small frac­tion of auto­mat­ed vehi­cles on low-lev­el traf­fic flow dynam­ics, using nov­el tech­niques in mod­el-free deep rein­force­ment learn­ing, in which the auto­mat­ed vehi­cles act as mobile (Lagrangian) con­trollers to traf­fic flow. Illus­tra­tive exam­ples will be pre­sent­ed in the con­text of a new open-source com­pu­ta­tion­al plat­form called FLOW, which inte­grates state of the art microsim­u­la­tion tools with deep-RL libraries on AWS EC2. Inter­est­ing behav­ior of mixed auton­o­my traf­fic will be revealed in the con­text of emer­gent behav­ior of traf­fic: https://flow-project.github.io/

Keynote Session 5 — Henry Liu 

Title: Intel­li­gent Dri­ving Intel­li­gence Test for Autonomous Vehi­cles with Nat­u­ral­is­tic and Adver­sar­i­al Dri­ving Envi­ron­ment
Speak­er: Hen­ry Liu
Abstract: Dri­ving intel­li­gence tests are crit­i­cal to the devel­op­ment and deploy­ment of autonomous vehi­cles. The pre­vail­ing approach tests autonomous vehi­cles in life-like sim­u­la­tions of the nat­u­ral­is­tic dri­ving envi­ron­ment. How­ev­er, due to the high dimen­sion­al­i­ty of the envi­ron­ment and the rareness of safe­ty-crit­i­cal events, hun­dreds of mil­lions of miles would be required to demon­strate the safe­ty per­for­mance of autonomous vehi­cles, which is severe­ly inef­fi­cient. We dis­cov­er that sparse but adver­sar­i­al adjust­ments to the nat­u­ral­is­tic dri­ving envi­ron­ment, result­ing in the nat­u­ral­is­tic and adver­sar­i­al dri­ving envi­ron­ment, can sig­nif­i­cant­ly reduce the required test miles with­out loss of eval­u­a­tion unbi­ased­ness. By train­ing the back­ground vehi­cles to learn when to exe­cute what adver­sar­i­al maneu­ver, the pro­posed envi­ron­ment becomes an intel­li­gent envi­ron­ment for dri­ving intel­li­gence test­ing. We demon­strate the effec­tive­ness of the pro­posed envi­ron­ment in a high­way-dri­ving sim­u­la­tion. Com­par­ing with the nat­u­ral­is­tic dri­ving envi­ron­ment, the pro­posed envi­ron­ment can accel­er­ate the eval­u­a­tion process by mul­ti­ple orders of magnitude.

Break 

Break

W‑2: Regular Session/Traffic Operations — David Hale 

Sub­mis­sion: A Method­ol­o­gy for Tra­jec­to­ry-Based Cal­i­bra­tion of Microsim­u­la­tion Mod­els
Pre­sen­ter: David Hale
Authors: David K. Hale (Lei­dos, Inc.)*; Xiaopeng Li (Uni­ver­si­ty of South Flori­da); Amir Ghi­asi (Lei­dos, Inc.); Dong­fang Zhao (Uni­ver­si­ty of South Florida)

W‑3: Regular Session/Data-Informed Decision Making — Shogo Umeda 

Sub­mis­sion: Risk Eval­u­a­tion of Anom­aly Event Occur­rence Using Probe Vehi­cle Data
Pre­sen­ter: Shogo Ume­da
Authors: Shogo Ume­da (Tohoku Uni­ver­si­ty)*; Yosuke Kawasa­ki (Tohoku Uni­ver­si­ty); Masao Kuwa­hara (Tohoku University)

W‑4: Regular Session/Shared Mobility — Jintao Ke 

Sub­mis­sion: Online Opti­miza­tion and Offline Learn­ing for On-Demand Match­ing in Ride-Sourc­ing Ser­vices
Pre­sen­ter: Jin­tao Ke
Authors: Xiao­ran Qin (Hong Kong Uni­ver­si­ty of Sci­ence and Tech­nol­o­gy); Jin­tao Ke (Hong Kong Uni­ver­si­ty of Sci­ence and Tech­nol­o­gy)*; Wei Liu (Uni­ver­si­ty of New South Wales); Hai Yang (Hong Kong Uni­ver­si­ty of Sci­ence and Technology)

W‑6: Lightning Session/Modeling, Simulation and Optimization — Zhixiong Luo 

Sub­mis­sion: Joint Deploy­ment of Low Emis­sion Zones and Elec­tric Vehi­cle Charg­ing Sta­tions
Pre­sen­ter: Zhix­iong Luo
Authors: Zhix­iong Luo (Tsinghua Uni­ver­si­ty)*; Fang He (Tsinghua Uni­ver­si­ty); Xi Lin (Tsinghua Uni­ver­si­ty); Meng Li (Tsinghua University)

W‑6: Lightning Session/Modeling, Simulation and Optimization — Yi Guo 

Sub­mis­sion: Sig­nal­ized Cor­ri­dor Man­age­ment with Tra­jec­to­ry Pre­dic­tion and Opti­miza­tion under Mixed-Auton­o­my Traf­fic Envi­ron­ment
Pre­sen­ter: Yi Guo
Authors: Yi Guo (Uni­ver­si­ty of Cincin­nati); Jiaqi Ma (Uni­ver­si­ty of Cal­i­for­nia, Los Angeles)*

W‑6: Lightning Session/Modeling, Simulation and Optimization — Mohammad Miralinaghi 

Sub­mis­sion: On the Opti­miza­tion of Elec­tric Charg­ing Infra­struc­ture to Address Vehic­u­lar Emis­sions
Pre­sen­ter: Moham­mad Mirali­naghi
Authors: Moham­mad Mirali­naghi (Pur­due Uni­ver­si­ty)*; Gonca­lo Cor­reia (TU Delft); Sania Esmaeilzadeh Seil­abi (Pur­due Uni­ver­si­ty); Mah­mood T. Tabesh (Pur­due Uni­ver­si­ty); Samuel Labi (Pur­due University)

W‑5: Lightning Session/Behavior — Hui Shen 

Sub­mis­sion: Trav­el Mode Choice of Young Peo­ple with Dif­fer­en­ti­at­ed E‑Hailing Ride Ser­vices: A Case Study in Nan­jing Chi­na
Pre­sen­ter: Hui Shen
Authors: Hui Shen (Uni­ver­si­ty of Illi­nois at Chica­go); Bo Zou (Uni­ver­si­ty of Illi­nois at Chica­go); Jane Lin (Uni­ver­si­ty of Illi­nois at Chicago)*

W‑5: Lightning Session/Behavior — Jingxing Wang 

Sub­mis­sion: Neigh­bor­hood Lev­el Impacts in Human Trav­el Pat­terns: Find­ings from the Clo­sure of Alaskan Way Viaduct
Pre­sen­ter: Jingx­ing Wang
Authors: Jingx­ing Wang (Uni­ver­si­ty of Wash­ing­ton)*; Xue­gang Ban (Uni­ver­si­ty of Wash­ing­ton); He Zhu (Uni­ver­si­ty of Washington)

W‑5: Lightning Session/Behavior — Xiangyang Guan 

Sub­mis­sion: A Nov­el State-Tran­si­tion Mod­el for Real-Time Fore­cast­ing of Evac­u­a­tion Demand
Pre­sen­ter: Xiangyang Guan
Authors: Xiangyang Guan (Uni­ver­si­ty of Wash­ing­ton)*; Cyn­thia Chen (Uni­ver­si­ty of Washington)

W‑5: Lightning Session/Behavior — Bartosz Bursa 

Sub­mis­sion: Mod­el­ling Tourist On-Site Mode Choice Deci­sions dur­ing Vaca­tion Stays
Pre­sen­ter: Bar­tosz Bur­sa
Authors: Bar­tosz Bur­sa (Uni­ver­si­ty of Inns­bruck)*; Markus Mail­er (Uni­ver­si­ty of Innsbruck)

W‑5: Lightning Session/Behavior — Ehsan Rahimi 

Sub­mis­sion: Ana­lyz­ing the Usage Fre­quen­cy of Shared E‑Scooters Dur­ing the COVID-19 Pan­dem­ic
Pre­sen­ter: Ehsan Rahi­mi
Authors: Ali Shamshiripour (UIC)*; Ehsan Rahi­mi (UIC); Ramin Sha­ban­pour (UIC); Abol­fa­zl (Kouros) Moham­ma­di­an (UIC)

W‑1: Regular Session/Connected and Automated Vehicles — Tamas Molnar 

Sub­mis­sion: On-Board Traffic Pre­dic­tion Via V2X Con­nec­tiv­i­ty
Pre­sen­ter: Tamas Mol­nar
Authors: Tamas G. Mol­nar (Uni­ver­si­ty of Michi­gan)*; Devesh Upad­hyay (Ford Motor Co.); Michael Hop­ka (Ford Motor Co.); Michiel Van Nieuw­stadt (Ford Motor Co.); Gabor Orosz (Uni­ver­si­ty of Michigan)

W‑2: Regular Session/Traffic Operations — Ali Zockaie 

Sub­mis­sion: Inves­ti­gat­ing Weath­er Impacts on Net­work-Wide Traf­fic Flow Rela­tion­ships
Pre­sen­ter: Ali Zock­aie
Authors: Ramin Sae­di (Michi­gan State Uni­ver­si­ty); Ali Zock­aie (Michi­gan State University)*

W‑3: Regular Session/Data-Informed Decision Making — Jiqian Dong 

Sub­mis­sion: Lane-Change Deci­sions of Con­nect­ed Autonomous Vehi­cles Using Spa­tial­ly-Weight­ed Infor­ma­tion and Deep Rein­force­ment Learn­ing
Pre­sen­ter: Jiqian Dong
Authors: Jiqian Dong (Pur­due Uni­ver­si­ty); Sikai Chen (Pur­due Uni­ver­si­ty)*; Paul (Young Joun) Ha (Pur­due Uni­ver­si­ty); Run­jia Du (Pur­due Uni­ver­si­ty); Yujie Li (South­east Uni­ver­si­ty); Samuel Labi (Pur­due University)

W‑4: Regular Session/Shared Mobility — Ester Lorente 

Sub­mis­sion: An Agent-based Sim­u­la­tion Mod­el for Inter­modal Assign­ment of Pub­lic Trans­port and Ride Pool­ing Ser­vices
Pre­sen­ter: Ester Lorente
Authors: Ester Lorente (PTV Group)*; Jaime Barce­lo (Tech. Univ. of Catalun­ya); Esteve Cod­i­na (Uni­ver­si­tat Politèc­ni­ca de Catalun­ya); Klaus Nökel (PTV Group)

W‑1: Regular Session/Connected and Automated Vehicles — Xiaopeng Li 

Sub­mis­sion: Vehi­cle Tra­jec­to­ry Opti­miza­tion at a Sig­nal­ized Inter­sec­tion in Mixed Traf­fic: Mod­el and Field Exper­i­ments
Pre­sen­ter: Xiaopeng Li
Authors: Zhen Wang (Chang'an Uni­veristy)*; Xiaopeng Li (Uni­ver­si­ty of South Flori­da); Xiang­mo Zhao (Changan Uni­ver­si­ty); Zhi­gang Xu (Chang'an University)

W‑2: Regular Session/Traffic Operations — Daniel Bramich 

Sub­mis­sion: Fit­Fun: Improved noise mod­els for Fun­da­men­tal Dia­grams
Pre­sen­ter: Daniel Bramich
Authors: Dan Bramich (New York Uni­ver­si­ty Abu Dhabi)*; Mon­i­ca Menen­dez (New York Uni­ver­si­ty Abu Dhabi); Lukas Ambuhl (ETH Zurich)

W‑4: Regular Session/Shared Mobility — Xiaolin Cai 

Sub­mis­sion: Mod­el­ing and Sim­u­la­tion of Poten­tial Use-Cas­es for Shared Mobil­i­ty Ser­vices in the City of Ann Arbor
Pre­sen­ter: Xiaolin Cai
Authors: Richard Twu­masi-Boakye (Ford Motor Com­pa­ny)*; Xiaolin Cai (Ford Motor Com­pa­ny); James Fishel­son (Ford Motor Company)

W‑1: Regular Session/Connected and Automated Vehicles — Jiaqi Ma 

Sub­mis­sion: DTEM: Dynam­ic Traf­fic Envi­ron­ment Map­ping for Con­nect­ed and Auto­mat­ed Traf­fic Con­trol
Pre­sen­ter: Jiaqi Ma
Authors: Tao Li (Uni­ver­si­ty of Cincin­nati); Jiaqi Ma (Uni­ver­si­ty of Cal­i­for­nia, Los Angeles)*

W‑3: Regular Session/Data-Informed Decision Making — Yiyang Wang 

Sub­mis­sion: Real-Time Sen­sor Anom­aly Detec­tion and Recov­ery in Con­nect­ed Auto­mat­ed Vehi­cle Sen­sors
Pre­sen­ter: Yiyang Wang
Authors: Yiyang Wang (Uni­ver­si­ty of Michi­gan)*; Neda Masoud (Uni­ver­si­ty of Michi­gan); Anahi­ta Kho­jan­di (Uni­ver­si­ty of Tennessee)

W‑4: Regular Session/Shared Mobility — Nicholas Caros 

Sub­mis­sion: Lever­ag­ing Des­ti­na­tion Flex­i­bil­i­ty to Increase Rideshar­ing Par­tic­i­pa­tion: An Inte­grat­ed Mod­el and Case Study
Pre­sen­ter: Nicholas Caros
Authors: Nicholas Caros (MIT); Jin­hua Zhao (MIT)*

Break 

Break

Keynote Session 6 — Fengmin Gong 

Title: Bet­ter Jour­neys For All Through Impact, Inno­va­tion & Respon­si­bil­i­ty
Speak­er: Feng­min Gong
Abstract: Data sci­ence and AI are at the core of the “fourth indus­tri­al res­o­lu­tion”. While the sci­ence and tech­nol­o­gy com­mu­ni­ty are dili­gent­ly push­ing the fron­tier for the ben­e­fits of human­i­ty, some fear the neg­a­tive impact of the same. The crust of the mat­ter is that, Data sci­ence and AI are pow­er­ful tools with huge poten­tial, HOW we har­ness this pow­er is the most crit­i­cal fac­tor to suc­cess or dis­as­ter. In this talk, I will share three main guid­ing prin­ci­ples — impact, inno­va­tion, and respon­si­bil­i­ty, which should help us to do the right things the right way in apply­ing AI. DiDi has been at the fore­front in trans­form­ing trans­porta­tion through AI. To illus­trate these prin­ci­ples, I will use some exam­ples in rein­force­ment learn­ing for opti­miza­tion, NLP for safe rides, and use-case dri­ven sim­u­la­tion for AV.

Keynote Session 7 — Kay Axhausen 

Title: Think­ing about the Long-Term Impacts of the Pan­dem­ic
Speak­er: Kay Axhausen
Abstract: The pan­dem­ic has accel­er­at­ed a num­ber of trends with a big impact on the trans­port sys­tem: work­ing from home and e‑commerce. The pre­sen­ta­tion will out­line the behav­iour­al changes observed in the last year using a sub­stan­tial Swiss GPS track­ing pan­el. Based on these changes it will dis­cuss, if these are enough to address the dilem­ma of trans­port plan­ning between acces­si­bil­i­ty improve­ments and induced demand, espe­cial­ly giv­en our duty to reduce GHG emissions.

Break 

Break

Th‑1: Regular Session/Electrification — Lili Du 

Sub­mis­sion: A Com­mer­cial Charg­ing-as-a-Ser­vice Plat­form for Emerg­ing Mobile EV to EV Charg­ing Ser­vice
Pre­sen­ter: Lili Du
Authors: Jiahua Qiu (Uni­ver­si­ty of Flori­da); Lili Du (Uni­ver­si­ty of Florida)*

Th‑3: Regular Session/Behavior and Demand — Wenwen Zhang 

Sub­mis­sion: Machine Learn­ing Based Microsim­u­la­tion Approach for the Spa­tial Dis­tri­b­u­tions of Auto­mat­ed Vehi­cle Pref­er­ences
Pre­sen­ter: Wen­wen Zhang
Authors: Wen­wen Zhang (Vir­ginia Tech)*; Kai­di Wang (Vir­ginia Tech); Sicheng Wang (Rut­gers Uni­ver­si­ty); Zhiqiu Jiang (Uni­ver­si­ty of Vir­ginia); Andrew Mond­schein (Uni­ver­si­ty of Vir­ginia); Robert B. Noland (Rut­gers University)

Th‑4: Regular Session/Transportation Network Modeling — Noriko Kaneko 

Sub­mis­sion: Opti­mal Con­ges­tion Tolling Prob­lem under the Mar­kov­ian Traf­fic Equi­lib­ri­um
Pre­sen­ter: Noriko Kaneko
Authors: Noriko Kaneko (ex Tokyo Insti­tute of Tech­nol­o­gy); Daisuke Fuku­da (Tokyo Insti­tute of Tech­nol­o­gy)*; Qian Ge (South­west Jiao­tong University)

Th‑5: Lightning Session/Data — Hui Shen 

Sub­mis­sion: Pre­lim­i­nary Inves­ti­ga­tion of Crowd-ship­ping with Real-world Data: A Case Study of Atlanta, GA
Pre­sen­ter: Hui Shen
Authors: Hui Shen (Uni­ver­si­ty of Illi­nois at Chica­go); Jane Lin (Uni­ver­si­ty of Illi­nois at Chicago)*

Th‑5: Lightning Session/Data — Zahra Eftekhar 

Sub­mis­sion: Ker­nel-based Approach to Recon­struct Trav­el Diaries from GSM Records
Pre­sen­ter: Zahra Eftekhar
Authors: Zahra Eftekhar (TU Delft)*; Adam Pel (TU Delft); Hans van Lint (TU Delft)

Th‑5: Lightning Session/Data — Mengxin Wang 

Sub­mis­sion: Urban Couri­er: Oper­a­tional Inno­va­tion and Data-Dri­ven Cov­er­age-and-Pric­ing
Pre­sen­ter: Mengx­in Wang
Authors: Mengx­in Wang (Uni­ver­si­ty of Cal­i­for­nia, Berkeley)*

Th‑5: Lightning Session/Data — Walid Fourati 

Sub­mis­sion: Esti­mat­ing Fun­da­men­tal Dia­grams of Sig­nal­ized Links from Aggre­gat­ed Tra­jec­to­ries
Pre­sen­ter: Walid Fourati
Authors: Walid Fourati (Tech­ni­cal Uni­ver­si­ty of Braun­schweig)*; Aleks Tri­funovic (Tech­ni­cal Uni­ver­si­ty of Braun­schweig); Bern­hard Friedrich (Insti­tute of Trans­porta­tion and Urban Engi­neer­ing, TU Braunschweig)

Th‑5: Lightning Session/Data — Ke Zhang 

Sub­mis­sion: A Mul­ti-Agent Rein­force­ment Learn­ing Frame­work for Mul­ti­ple Vehi­cle Rout­ing Prob­lems with Soft Time Win­dows
Pre­sen­ter: Ke Zhang
Authors: Ke Zhang (Tsinghua University)*

Th‑5: Lightning Session/Data — Takahiro Tsubota 

Sub­mis­sion: Deep Learn­ing Mod­el for Pre­dict­ing Traf­fic Acci­dent Risk on an Express­way
Pre­sen­ter: Takahi­ro Tsub­o­ta
Authors: Takahi­ro Tsub­o­ta (Ehime uni­ver­si­ty)*; Mamoru Shim­mizu (Ehime Uni­ver­si­ty); Toshio Yoshii (Ehime Uni­ver­si­ty); Hiro­to­shi Shi­rayana­gi (Ehime University)

Th‑6: Lightning Session/Shared Mobility — Xiaotong Guo 

Sub­mis­sion: Robust Match­ing-Inte­grat­ed Vehi­cle Rebal­anc­ing in Ride-hail­ing Sys­tem with Uncer­tain Demand
Pre­sen­ter: Xiao­tong Guo
Authors: Xiao­tong Guo (MIT); Nicholas Caros (MIT); Jin­hua Zhao (MIT)*

Th‑6: Lightning Session/Shared Mobility — Matthew Dean 

Sub­mis­sion: Syn­er­gies between Repo­si­tion­ing and Charg­ing Strate­gies for Shared Autonomous Elec­tric Vehi­cle (SAEV) Fleets
Pre­sen­ter: Matthew Dean
Authors: Matthew D. Dean (Uni­ver­si­ty of Texas at Austin)*; Krish­na Murthy Guru­murthy (Uni­ver­si­ty of Texas at Austin); Felipe de Souza (Argonne Nation­al Lab­o­ra­to­ry); Joshua Auld (Argonne Nation­al Lab­o­ra­to­ry ); Kara Kock­el­man (Uni­ver­si­ty of Texas at Austin)

Th‑6: Lightning Session/Shared Mobility — Irene Martinez 

Sub­mis­sion: Trip Length Dis­tri­b­u­tion of TNC Trips: Based on Empir­i­cal Data in Chica­go
Pre­sen­ter: Irene Mar­tinez
Authors: Irene Martínez (Uni­ver­si­ty of Cal­i­for­nia, Irvine)*; Wen-Long Jin (Uni­ver­si­ty of Cal­i­for­nia, Irvine)

Th‑6: Lightning Session/Shared Mobility — Yunhai Gong 

Sub­mis­sion: Explor­ing the Impact of Urban Built Envi­ron­ment on Land Use Diver­si­ty under Shared Autonomous Vehi­cles and Road Pric­ing
Pre­sen­ter: Yun­hai Gong
Authors: Yun­hai Gong (Dalian Uni­ver­si­ty of Tech­nol­o­gy); ZHONG WANG (Dalian Uni­ver­si­ty of Tech­nol­o­gy); Shengchuan Zhao (Dalian Uni­ver­si­ty of Tech­nol­o­gy); Shaopeng Zhong (Dalian Uni­ver­si­ty of Technology)*

Th‑6: Lightning Session/Shared Mobility — Hao Guo 

Sub­mis­sion: Opti­mal Assign­ment and Relo­ca­tion of Shared Autonomous Vehi­cles Con­sid­er­ing Mode Choic­es
Pre­sen­ter: Hao Guo
Authors: Yang Liu (Nation­al Uni­ver­si­ty of Sin­ga­pore)*; Hao Guo (Nation­al Uni­ver­si­ty of Sin­ga­pore); Yao Chen (Bei­jing Jiao­tong University)

Th‑1: Regular Session/Electrification — Eleftheria Kontou 

Sub­mis­sion: Alter­na­tive Fuel Vehi­cles Evac­u­a­tion Plan­ning: Mod­el­ing and Numer­i­cal Exper­i­ments
Pre­sen­ter: Eleft­he­ria Kon­tou
Authors: Denis­sa Pur­ba (Uni­ver­si­ty of Illi­nois at Urbana-Cham­paign); Eleft­he­ria Kon­tou (Uni­ver­si­ty of Illi­nois at Urbana-Cham­paign)*; Chrysafis Vogiatzis (Uni­ver­si­ty of Illi­nois at Urbana-Champaign)

Th‑3: Regular Session/Behavior and Demand — Shenhao Wang 

Sub­mis­sion: The­o­ry-Based Resid­ual Neur­al Net­works: A Syn­er­gy of Dis­crete Choice Mod­els and Deep Neur­al Net­works
Pre­sen­ter: Shen­hao Wang
Authors: Shen­hao Wang (MIT)*; Baichuan Mo (MIT); Jin­hua Zhao (MIT)

Th‑1: Regular Session/Electrification — Mohammadreza Kavianipour 

Sub­mis­sion: Charg­ing Infra­struc­ture Plan­ning in Urban Net­works Con­sid­er­ing Detour and Queu­ing Delay
Pre­sen­ter: Moham­madreza Kavia­n­ipour
Authors: Moham­madreza Kavia­n­ipour (Michi­gan State Uni­ver­si­ty); Fate­meh Fakhrmoosavi (Michi­gan State Uni­ver­si­ty); Mehrnaz Ghama­mi (Mici­gan Satate Uni­ver­si­ty); Ali Zock­aie (Michi­gan State University)*

Th‑2: Regular Session/Implication of Automated Vehicles — Xiangdong Chen 

Sub­mis­sion: Rhyth­mic Con­trol at Inter­sec­tion: Con­cept and Prop­er­ties
Pre­sen­ter: Xiang­dong Chen
Authors: Xiang­dong Chen (Tsinghua Uni­ver­si­ty); Meng Li (Tsinghua Uni­ver­si­ty); Xi Lin (Tsinghua Uni­ver­si­ty); Yafeng Yin (Uni­ver­si­ty of Michi­gan); Fang He (Tsinghua University)*

Th‑3: Regular Session/Behavior and Demand — Reza Ansari 

Sub­mis­sion: Prop­a­ga­tion Pre­dic­tion in Urban Road Net­work Dur­ing Acci­dent
Pre­sen­ter: Reza Ansari
Authors: Reza Ansari Esfe (Uni­veristy of Cal­gary)*; Lina Kat­tan (Uni­ver­si­ty of Cal­gary); Moham­mad Ansari Esfeh (Uni­ver­si­ty of Calgary)

Th‑4: Regular Session/Transportation Network Modeling — Daisik Nam 

Sub­mis­sion: A Mod­el for Sys­tem Opti­mum Dynam­ic Traf­fic Assign­ment with Min­i­mum-Envy Allo­ca­tions
Pre­sen­ter: Daisik Nam
Authors: Daisik Nam (Uni­ver­si­ty of Cal­i­for­nia, Irvine)*; R. Jayakr­ish­nan (Uni­ver­si­ty of Cal­i­for­nia, Irvine)

Th‑1: Regular Session/Electrification — Xindi Tang 

Sub­mis­sion: Online Oper­a­tions of Auto­mat­ed Elec­tric Taxi Fleets: An Advi­sor-stu­dent Rein­force­ment Learn­ing Frame­work
Pre­sen­ter: Xin­di Tang
Authors: Xin­di Tang (Tsinghua Uni­ver­si­ty)*; Meng Li (Tsinghua Uni­ver­si­ty); Xi Lin (Tsinghua Uni­ver­si­ty); Fang He (Tsinghua University)

Th‑2: Regular Session/Implication of Automated Vehicles — Andres Ladino 

Sub­mis­sion: Sys­tem Lev­el Impacts of V2I-Based Speed Con­trol Strate­gies: The SCOOP@F Project Deploy­ment Sce­nar­ios
Pre­sen­ter: Andres Ladi­no
Authors: Andres A. Ladi­no (Uni­ver­sité Gus­tave Eif­fel)*; Pierre-Antoine Laharotte (Uni­ver­sité Gus­tave Eif­fel); Nour-Eddin El Faouzi (Uni­ver­sité Gus­tave Eiffel)

Th‑3: Regular Session/Behavior and Demand — Can Li 

Sub­mis­sion: Prob­a­bilis­tic Pub­lic Trans­port Demand Esti­ma­tion with Graph Con­vo­lu­tion Neur­al Net­work
Pre­sen­ter: Can Li
Authors: Can Li (UNSW, Syd­ney)*; Lei Bai (UNSW, Syd­ney); Wei Liu (Uni­ver­si­ty of New South Wales); Lina Yao (UNSW, Syd­ney); Travis Waller (Uni­ver­si­ty of New South Wales)

Th‑4: Regular Session/Transportation Network Modeling — Tingting Xie 

Sub­mis­sion: Het­ero­ge­neous Infor­ma­tion Pro­vi­sion on Traf­fic Net­works with Com­pet­i­tive or Coop­er­a­tive Infor­ma­tion Providers
Pre­sen­ter: Tingt­ing Xie
Authors: Yang Liu (Nation­al Uni­ver­si­ty of Sin­gapo)*; Tingt­ing Xie (Nation­al Uni­ver­si­ty of Singapore)

Break 

Break

Keynote Session 8 – Chandra Bhat 

Title: What Can We Learn about Trav­el and Safe­ty Impli­ca­tions from Par­tial­ly Auto­mat­ed Vehi­cle Use?
Speak­er: Chan­dra Bhat
Abstract: Inves­ti­gat­ing the poten­tial activ­i­ty-trav­el behav­ior impacts of ful­ly autonomous vehi­cles (des­ig­nat­ed as Lev­el 5 automa­tion on the Soci­ety of Auto­mo­tive Engi­neers or SAE scale) can only be under­tak­en today through stat­ed pref­er­ence or SP sur­veys (that is, ask­ing indi­vid­u­als how they may change their mobil­i­ty pat­terns in a hypo­thet­i­cal envi­ron­ment with a Lev­el 5 vehi­cle). But indi­vid­u­als may not be in a posi­tion to pro­vide appro­pri­ate respons­es when thrust into a hypo­thet­i­cal envi­ron­ment that is dif­fi­cult to con­jure up. In this regard, SAE Lev­el 1 fea­tures (such as adap­tive cruise con­trol or park­ing assist fea­tures) are in most new vehi­cles today, while many high­er-end vehi­cles today also achieve Lev­el 2 automa­tion (such as vehi­cles with adap­tive cruise con­trol, hands-free lane chang­ing, and self-park­ing). The avail­abil­i­ty and use of these vehi­cles today, albeit with low­er lev­els of automa­tion, can pro­vide impor­tant and reli­able insights on how trav­el pat­terns may change with advanc­ing tech­nol­o­gy. In this paper, we pro­pose to exam­ine poten­tial mobil­i­ty changes due to tech­nol­o­gy fea­tures that exist today in vehi­cles. Impor­tant­ly, while some ear­li­er stud­ies have exam­ined con­sumer accep­tance of exist­ing vehi­cle tech­nol­o­gy, we go beyond con­sumer accep­tance to also exam­ine how indi­vid­u­als with and with­out automa­tion fea­tures in their vehi­cles dif­fer in their annu­al vehi­cle miles of trav­el (VMT). Poten­tial impli­ca­tions for road­way safe­ty due to VMT changes are also discussed.